VectorTraits 1.0.0

There is a newer version of this package available.
See the version list below for details.
dotnet add package VectorTraits --version 1.0.0                
NuGet\Install-Package VectorTraits -Version 1.0.0                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="VectorTraits" Version="1.0.0" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add VectorTraits --version 1.0.0                
#r "nuget: VectorTraits, 1.0.0"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install VectorTraits as a Cake Addin
#addin nuget:?package=VectorTraits&version=1.0.0

// Install VectorTraits as a Cake Tool
#tool nuget:?package=VectorTraits&version=1.0.0                

VectorTraits

English | Chinese(中文)

VectorTraits: SIMD Vector type traits methods (SIMD向量类型的特征方法). NuGet

This library provides many important arithmetic methods(e.g. Shift, Shuffle, NarrowSaturate) and constants for vector types, making it easier for you to write cross-platform SIMD code. It takes full advantage of the X86 and Arm architectures' intrinsic functions to achieve hardware acceleration and can enjoy inline compilation optimization.

Commonly Used Types:

  • Vectors: For vector types, common tool functions are provided, e.g. Create(T/T[]/Span/ReadOnlySpan), CreatePadding, CreateRotate, CreateByFunc, CreateByDouble ... It also provides traits methods for vectors, e.g. ShiftLeft、ShiftRightArithmetic、ShiftRightLogical、Shuffle ...
  • Vectors<T>: For vector types, constants are provided for various element types. e.g. Serial, SerialDesc, XyzwWMask, MantissaMask, MaxValue, MinValue, NormOne, FixedOne, E, Pi, Tau, VMaxByte, VReciprocalMaxSByte ...
  • Vector64s/Vector128s/Vector256s: Common tool functions and traits methods are provided for vectors of fixed bit width (Vector64/Vector128/Vector256).
  • Vector64s<T>/Vector128s<T>/Vector256s<T>: Provides constants of various element types for vectors of fixed bit width.
  • Scalars: For scalar types, various tool functions are provided. e.g. GetByDouble, GetFixedByDouble, GetByBits, GetBitsMask ...
  • Scalars<T>: For scalar types, a number of constants are provided. e.g. ExponentBits, MantissaBits, MantissaMask, MaxValue, MinValue, NormOne, FixedOne, E, Pi, Tau, VMaxByte, VReciprocalMaxSByte ...
  • VectorTextUtil: Provides some textual instrumental functions for vectors. e.g. GetHex, Format, WriteLine ...

Traits methods:

  • Support for .NET Standard 2.1 new vector methods: ConvertToDouble, ConvertToInt32, ConvertToInt64, ConvertToSingle, ConvertToUInt32, ConvertToUInt64, Narrow, Widen .
  • Support for .NET 5.0 new vector methods: Ceiling, Floor .
  • Support for .NET 6.0 new vector methods: Sum .
  • Support for .NET 7.0 new vector methods: ExtractMostSignificantBits, Shuffle, ShiftLeft, ShiftRightArithmetic, ShiftRightLogical .
  • Provides the vector methods of narrow saturate: YNarrowSaturate, YNarrowSaturateUnsigned .
  • Provides the vector methods of round: YRoundToEven, YRoundToZero .
  • Provides the vector methods of shuffle: YShuffleInsert, YShuffleKernel, YShuffleG2, YShuffleG4, YShuffleG4X2 . Also provides ShuffleControlG2/ShuffleControlG4 enum.
  • ...
  • Full list: TraitsMethodList

Supported instruction set:

  • x86
    • 256-bit vector: Avx, Avx2 .
  • Arm
    • 128-bit vector: AdvSimd .

Purpose

The SIMD instruction set is known to accelerate multimedia processing (graphics, images, audio, video, ...) , artificial intelligence, scientific computing, etc. However, traditional SIMD programming suffers from the following pain points.

  • Difficult to cross-platform. Because different CPU systems provide different SIMD instruction sets, for example, there are many differences between the SIMD instruction sets of X86 and Arm platforms. If you want to port the program to another platform, you need to find the SIMD instruction set manual of that platform and develop it again.
  • Bit widths are difficult to upgrade. Even for the same platform, as it evolves, instruction sets with wider bit widths are gradually added. For example, the X86 platform, in addition to the obsolete 64-bit MMX series instructions, provides a 128-bit SSE instruction set, a 256-bit AVX instruction set, and some high-end processors are starting to support the 512-bit AVX-512 instruction set. Algorithms previously written with 128-bit SSE series instructions need to be redeveloped to take full advantage of the wider SIMD instruction set if they are to be ported to the 256-bit AVX instruction set.
  • Poor code readability and high development threshold. Many modern C compilers map Intrinsic Functions for SIMD instructions, which is much easier and more readable than writing assembly code. However, due to the use of some obscure abbreviations for function names, and the fact that C does not support function name overloading, as well as the complexity of the C language itself, there is still a high threshold for code readability and development difficulty.

NET Core 1.0 in 2016 added vector types such as Vector<T>, which largely solves the above pain points.

  • Easy cross-platform. NET platform is run by JIT (Just-In-Time Compiler). Only one set of algorithms based on vector methods is written and compiled into only one set of programs. When that program is subsequently run on a different platform, the vector method is compiled by JIT into a platform-specific SIMD instruction set, thus taking full advantage of hardware acceleration.
  • Bitwidth can be upgraded automatically. For the Vector<T> type, its length is not fixed, but is the same as the longest vector register for that processor. Specifically, if the CPU supports the AVX instruction set (strictly AVX2 and above), the Vector<T> type is 256 bits; if the CPU only supports the SSE instruction set (strictly SSE2 and above), the Vector<T> type is 128 bits. Simply put, you can write your program using only the Vector<T> type, and when the program runs, JIT will automatically use the widest SIMD instruction set.
  • The code is more readable and lowers the development threshold. .NET platform, the method names of vector types are composed of complete English words, and make full use of C# syntax features such as function name overloading, so that these method names are both concise and clear. The readability of the code has been greatly improved.

The vector type Vector<T> although well designed, it lacks many important vector functions such as Ceiling, Sum, Shift, Shuffle, etc. This led to many algorithms that were difficult to implement with vector types. When .NET platform versions are upgraded, sometimes several vector methods are added. .NET 7.0 released in 2022, for example, added ShiftRightArithmetic, Shuffle and other methods. However, there are still few vector methods, such as the lack of saturation processing. To address the lack of vector methods, .NET Core 3.0 starts to support intrinsic functions. This allows developers to use the SIMD instruction set directly, but again, this faces problems such as difficulty in cross-platform and bit-width upgrades. As the .NET platform is upgraded, more intrinsic functions will be added. For example, .NET 5.0 adds intrinsic functions for the Arm platform. For developing libraries, you can't just support .NET 7.0, but you need to support multiple .NET versions. So you will face tedious version checking and conditional processing. And the highest version of the .NET Standard class library (2.1) still does not support vector methods like Ceiling, which makes version checking even more tedious.

This library is dedicated to solve the above troubles, so that you can write cross-platform SIMD algorithms more easily. Feature:

  • Support for low versions of .NET programs (.NET Standard 1.1, .NET Core 1.0, .NET Framework 4.5, ...). Enables low version of .NET programs to use the latest vector functions. For example, ShiftRightArithmetic, Shuffle, etc. are new in .NET 7.0.
  • Powerful functions . In addition to referencing vector methods from higher versions of .NET, this library also provides many useful vector methods by referring to intrinsic functions. e.g. ShiftLeft_Fast, YNarrowSaturate ...
  • High performance. This library can take full advantage of the X86 and Arm architecture's intrinsic functions for hardware acceleration of vector type computations, and can enjoy inline compilation optimization. This library solves the problem that some of BCL's vector methods (e.g. Multiply, Shuffle, etc.) are not hardware-accelerated on some platforms, because it supplements the hardware-accelerated algorithms.
  • Software algorithms are also fast. If you find a method of vector type does not support hardware acceleration, .NET Bcl will switch to software algorithm, but many of its software algorithms contain branching statements, so the performance is poor. The software algorithm of this library is a highly optimized branchless algorithm.
  • Easy to use. This library supports not only Vector<T>, but also Vector128<T>/Vector256<T> and other vector types. The class name of the tool class is easy to remember (Vectors/Vector64s/Vector128s/Vector256s) and provides many common vector constants through a generic class of the same name.
  • For each traits method, some properties are added to obtain information. e.g. _AcceleratedTypes, _FullAcceleratedTypes .

Tip: The Disassembly window in Visual Studio allows you to view the assembly code at runtime. For example, when running on a machine that supports the Avx instruction set, Vectors.ShiftLeft_Const will be compiled inline and optimized to use the vpsllw instruction. And for constant value(1), it will be compiled as the immediate number of the instruction. Vectors.ShiftLeft_use_inline.png

Example 2: Using Vectors.ShiftLeft_Args and Vectors.ShiftLeft_Core, you can move some of the operations outside the loop to be processed earlier. For example, when running on a machine that supports the Avx instruction set, xmm1 is set outside the loop, and then used it in the vpsllw instruction of the inner loop. And here it is shown: the inline compilation optimization eliminates redundant xmm/ymm conversions. Vectors.ShiftLeft_Core_use_inline.png

Getting started

1) Install via NuGet

Either open the 'Package Management Console' and enter the following or use the built-in GUI

NuGet: PM> Install-Package VectorTraits

2) Usage examples

The static class Vectors provides some methods. e.g. CreateRotate, ShiftLeft, Shuffle. The generic structure 'Vectors<T>' provides fields for commonly used constants.

The example code is in the samples/VectorTraits.Sample folder. The source code is as follows.

using System;
using System.IO;
using System.Numerics;
#if NETCOREAPP3_0_OR_GREATER
using System.Runtime.Intrinsics;
#endif
using Zyl.VectorTraits;

namespace Zyl.VectorTraits.Sample {
    class Program {
        private static readonly TextWriter writer = Console.Out;
        static void Main(string[] args) {
            writer.WriteLine("VectorTraits.Sample");
            writer.WriteLine();
            VectorTraitsGlobal.Init(); // Initialization .
            TraitsOutput.OutputEnvironment(writer); // Output environment info .
            writer.WriteLine();

            // -- Start --
            Vector<short> src = Vectors.CreateRotate<short>(0, 1, 2, 3, 4, 5, 6, 7); // The `Vectors` class provides some methods. For example, 'CreateRotate' is rotate fill .
            VectorTextUtil.WriteLine(writer, "src:\t{0}", src); // It can not only format the string, but also display the hexadecimal of each element in the vector on the right Easy to view vector data .

            // ShiftLeft. It is a new vector method in `.NET 7.0`
            const int shiftAmount = 1;
            Vector<short> shifted = Vectors.ShiftLeft(src, shiftAmount); // shifted[i] = src[i] << shiftAmount.
            VectorTextUtil.WriteLine(writer, "ShiftLeft:\t{0}", shifted);
#if NET7_0_OR_GREATER
            // Compare BCL function .
            Vector<short> shiftedBCL = Vector.ShiftLeft(src, shiftAmount);
            VectorTextUtil.WriteLine(writer, "Equals to BCL ShiftLeft:\t{0}", shifted.Equals(shiftedBCL));
#endif
            // ShiftLeft_Const
            VectorTextUtil.WriteLine(writer, "Equals to ShiftLeft_Const:\t{0}", shifted.Equals(Vectors.ShiftLeft_Const(src, shiftAmount))); // If the parameter shiftAmount is a constant, you can also use the Vectors' ShiftLeft_Const method. It is faster in many scenarios .
            writer.WriteLine();

            // Shuffle. It is a new vector method in `.NET 7.0`
            Vector<short> desc = Vectors<short>.SerialDesc; // The generic structure 'Vectors<T>' provides fields for commonly used constants. For example, 'SerialDesc' is a descending order value .
            VectorTextUtil.WriteLine(writer, "desc:\t{0}", desc);
            Vector<short> dst = Vectors.Shuffle(shifted, desc); // dst[i] = shifted[desc[i]].
            VectorTextUtil.WriteLine(writer, "Shuffle:\t{0}", dst);
#if NET7_0_OR_GREATER
            // Compare BCL function . 
            Vector<short> dstBCL = default; // Since `.NET 7.0`, the Shuffle method has been provided in Vector128/Vector256, but the Shuffle method has not yet been provided in Vector .
            if (Vector<short>.Count == Vector128<short>.Count) {
                dstBCL = Vector128.Shuffle(shifted.AsVector128(), desc.AsVector128()).AsVector();
            } else if (Vector<short>.Count == Vector256<short>.Count) {
                dstBCL = Vector256.Shuffle(shifted.AsVector256(), desc.AsVector256()).AsVector();
            }
            VectorTextUtil.WriteLine(writer, "Equals to BCL Shuffle:\t{0}", dst.Equals(dstBCL));
#endif
            // Shuffle_Args and Shuffle_Core
            Vectors.Shuffle_Args(desc, out var args0, out var args1); // The suffix is the `Args' method used for parameter calculation, which involves processing such as parameter transformation in advance It is suitable for external loop .
            Vector<short> dst2 = Vectors.Shuffle_Core(shifted, args0, args1); // The suffix is the `Core` method used for core calculations, which calculates based on cached parameters It is suitable for internal loop to improve performance .
            VectorTextUtil.WriteLine(writer, "Equals to Shuffle_Core:\t{0}", dst.Equals(dst2));
            writer.WriteLine();

            // Show AcceleratedTypes.
            VectorTextUtil.WriteLine(writer, "ShiftLeft_AcceleratedTypes:\t{0}", Vectors.ShiftLeft_AcceleratedTypes);
            VectorTextUtil.WriteLine(writer, "Shuffle_AcceleratedTypes:\t{0}", Vectors.Shuffle_AcceleratedTypes);
        }
    }
}

3) Example results

.NET7.0 on X86

Program: VectorTraits.Sample

VectorTraits.Sample

IsRelease:      True
EnvironmentVariable(PROCESSOR_IDENTIFIER):      Intel64 Family 6 Model 142 Stepping 10, GenuineIntel
Environment.ProcessorCount:     8
Environment.Is64BitProcess:     True
Environment.OSVersion:  Microsoft Windows NT 10.0.19045.0
Environment.Version:    7.0.3
Stopwatch.Frequency:    10000000
RuntimeEnvironment.GetRuntimeDirectory: C:\Program Files\dotnet\shared\Microsoft.NETCore.App\7.0.3\
RuntimeInformation.FrameworkDescription:        .NET 7.0.3
RuntimeInformation.OSArchitecture:      X64
RuntimeInformation.OSDescription:       Microsoft Windows 10.0.19045
RuntimeInformation.RuntimeIdentifier:   win10-x64
IntPtr.Size:    8
BitConverter.IsLittleEndian:    True
Vector.IsHardwareAccelerated:   True
Vector<byte>.Count:     32      # 256bit
Vector<float>.Count:    8       # 256bit
VectorTraitsGlobal.InitCheckSum:        7960959 # 0x0079797F
Vector<T>.Assembly.CodeBase:    file:///C:/Program Files/dotnet/shared/Microsoft.NETCore.App/7.0.3/System.Private.CoreLib.dll
GetTargetFrameworkDisplayName(VectorTextUtil):  .NET 7.0
GetTargetFrameworkDisplayName(TraitsOutput):    .NET 7.0
Vectors.Instance:       VectorTraits256Avx2

src:    <0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7>        # (0000 0001 0002 0003 0004 0005 0006 0007 0000 0001 0002 0003 0004 0005 0006 0007)
ShiftLeft:      <0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 14>  # (0000 0002 0004 0006 0008 000A 000C 000E 0000 0002 0004 0006 0008 000A 000C 000E)
Equals to BCL ShiftLeft:        True
Equals to ShiftLeft_Const:      True

desc:   <15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0>  # (000F 000E 000D 000C 000B 000A 0009 0008 0007 0006 0005 0004 0003 0002 0001 0000)
Shuffle:        <14, 12, 10, 8, 6, 4, 2, 0, 14, 12, 10, 8, 6, 4, 2, 0>  # (000E 000C 000A 0008 0006 0004 0002 0000 000E 000C 000A 0008 0006 0004 0002 0000)
Equals to BCL Shuffle:  True
Equals to Shuffle_Core: True

ShiftLeft_AcceleratedTypes:     SByte, Byte, Int16, UInt16, Int32, UInt32, Int64, UInt64        # (00001FE0)
Shuffle_AcceleratedTypes:       SByte, Byte, Int16, UInt16, Int32, UInt32, Int64, UInt64, Single, Double        # (00007FE0)

Note: The text before Vectors.Instance is the environment information output by TraitsOutput.OutputEnvironment. OutputEnvironment. The text starting from srcis the main code of the example. Since the CPU supports the X86 Avx2 instruction set,Vector<byte>.Countis 32(256bit), andVectors.InstanceisVectorTraits256Avx2`.

.NET7.0 on Arm

Program: VectorTraits.Sample

VectorTraits.Sample

IsRelease:	True
EnvironmentVariable(PROCESSOR_IDENTIFIER):	
Environment.ProcessorCount:	2
Environment.Is64BitProcess:	True
Environment.OSVersion:	Unix 5.19.0.1025
Environment.Version:	7.0.8
Stopwatch.Frequency:	1000000000
RuntimeEnvironment.GetRuntimeDirectory:	/home/ubuntu/.dotnet/shared/Microsoft.NETCore.App/7.0.8/
RuntimeInformation.FrameworkDescription:	.NET 7.0.8
RuntimeInformation.OSArchitecture:	Arm64
RuntimeInformation.OSDescription:	Linux 5.19.0-1025-aws #26~22.04.1-Ubuntu SMP Mon Apr 24 01:58:03 UTC 2023
RuntimeInformation.RuntimeIdentifier:	ubuntu.22.04-arm64
IntPtr.Size:	8
BitConverter.IsLittleEndian:	True
Vector.IsHardwareAccelerated:	True
Vector<byte>.Count:	16	# 128bit
Vector<float>.Count:	4	# 128bit
VectorTraitsGlobal.InitCheckSum:	7960961	# 0x00797981
Vector<T>.Assembly.CodeBase:	file:///home/ubuntu/.dotnet/shared/Microsoft.NETCore.App/7.0.8/System.Private.CoreLib.dll
GetTargetFrameworkDisplayName(VectorTextUtil):	.NET 7.0
GetTargetFrameworkDisplayName(TraitsOutput):	.NET 7.0
Vectors.Instance:	VectorTraits128AdvSimdB64

src:	<0, 1, 2, 3, 4, 5, 6, 7>	# (0000 0001 0002 0003 0004 0005 0006 0007)
ShiftLeft:	<0, 2, 4, 6, 8, 10, 12, 14>	# (0000 0002 0004 0006 0008 000A 000C 000E)
Equals to BCL ShiftLeft:	True
Equals to ShiftLeft_Const:	True

desc:	<7, 6, 5, 4, 3, 2, 1, 0>	# (0007 0006 0005 0004 0003 0002 0001 0000)
Shuffle:	<14, 12, 10, 8, 6, 4, 2, 0>	# (000E 000C 000A 0008 0006 0004 0002 0000)
Equals to BCL Shuffle:	True
Equals to Shuffle_Core:	True

ShiftLeft_AcceleratedTypes:	SByte, Byte, Int16, UInt16, Int32, UInt32, Int64, UInt64	# (00001FE0)
Shuffle_AcceleratedTypes:	SByte, Byte, Int16, UInt16, Int32, UInt32, Int64, UInt64, Single, Double	# (00007FE0)

The result is the same as the X86 one, only the environment information is different. Since the CPU supports Arm's AdvSimd instruction set, Vector<byte>.Count is 16(128bit) and Vectors.Instance is VectorTraits128AdvSimdB64.

.NET Framework 4.5 on X86

Program: VectorTraits.Sample.NetFw.

VectorTraits.Sample

IsRelease:      True
EnvironmentVariable(PROCESSOR_IDENTIFIER):      Intel64 Family 6 Model 142 Stepping 10, GenuineIntel
Environment.ProcessorCount:     8
Environment.Is64BitProcess:     True
Environment.OSVersion:  Microsoft Windows NT 6.2.9200.0
Environment.Version:    4.0.30319.42000
Stopwatch.Frequency:    10000000
RuntimeEnvironment.GetRuntimeDirectory: C:\Windows\Microsoft.NET\Framework64\v4.0.30319\
RuntimeInformation.FrameworkDescription:        .NET Framework 4.8.9167.0
RuntimeInformation.OSArchitecture:      X64
RuntimeInformation.OSDescription:       Microsoft Windows 10.0.19045
IntPtr.Size:    8
BitConverter.IsLittleEndian:    True
Vector.IsHardwareAccelerated:   True
Vector<byte>.Count:     32      # 256bit
Vector<float>.Count:    8       # 256bit
VectorTraitsGlobal.InitCheckSum:        -25396097       # 0xFE7C7C7F
Vector<T>.Assembly.CodeBase:    file:///E:/zylSelf/Code/cs/base/VectorTraits/samples/VectorTraits.Sample.NetFw/bin/Release/System.Numerics.Vectors.DLL
GetTargetFrameworkDisplayName(VectorTextUtil):  .NET Standard 1.1
GetTargetFrameworkDisplayName(TraitsOutput):    .NET Framework 4.5
Vectors.Instance:       VectorTraits256Base

src:    <0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7>        # (0000 0001 0002 0003 0004 0005 0006 0007 0000 0001 0002 0003 0004 0005 0006 0007)
ShiftLeft:      <0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 14>  # (0000 0002 0004 0006 0008 000A 000C 000E 0000 0002 0004 0006 0008 000A 000C 000E)
Equals to ShiftLeft_Const:      True

desc:   <15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0>  # (000F 000E 000D 000C 000B 000A 0009 0008 0007 0006 0005 0004 0003 0002 0001 0000)
Shuffle:        <14, 12, 10, 8, 6, 4, 2, 0, 14, 12, 10, 8, 6, 4, 2, 0>  # (000E 000C 000A 0008 0006 0004 0002 0000 000E 000C 000A 0008 0006 0004 0002 0000)
Equals to Shuffle_Core: True

ShiftLeft_AcceleratedTypes:     SByte, Byte, Int16, UInt16, Int32, UInt32       # (000007E0)
Shuffle_AcceleratedTypes:       None    # (00000000)

ShiftLeft/Shuffle of Vectors works fine. Since the CPU supports the X86 Avx2 instruction set, Vector<byte>.Count is 32 (256bit). Vectors.InstanceisVectorTraits256Base. It's not VectorTraits256Avx2because the intrinsic function wasn't supported until.NET Core 3.0`. The value of ShiftLeft_AcceleratedTypes contains types such as "Int16", which means that ShiftLeft is hardware-accelerated when using these types. The library makes clever use of vector algorithms to try to achieve hardware acceleration even without intrinsic functions.

Results of benchmark

Unit of data: Million operations per second. The larger the number, the better the performance.

ShiftLeft

ShiftLeft: Shifts each element of a vector left by the specified amount. It is a new vector method in .NET 7.0.

ShiftLeft - x86 - lntel Core i5-8250U
Type Method .NET Framework .NET Core 2.1 .NET Core 3.1 .NET 5.0 .NET 6.0 .NET 7.0
Byte SumSLLScalar 853.802 817.528 1104.993 1118.381 1374.255 1480.225
Byte SumSLLNetBcl 1128.290
Byte SumSLLNetBcl_Const 1137.564
Byte SumSLLTraits 8296.682 8114.085 21811.573 19960.732 21044.192 23074.627
Byte SumSLLTraits_Core 33328.333 35503.285 41644.146 35703.816 36615.138 32872.874
Byte SumSLLConstTraits 10849.899 10168.754 25029.290 29761.737 33785.502 32862.094
Byte SumSLLConstTraits_Core 36537.668 31837.586 39307.523 35698.909 35679.744 33994.997
Int16 SumSLLScalar 823.668 806.395 1176.133 1183.966 1379.498 1486.900
Int16 SumSLLNetBcl 18445.571
Int16 SumSLLNetBcl_Const 19054.243
Int16 SumSLLTraits 5076.036 5047.453 16986.361 16653.329 16496.182 16114.543
Int16 SumSLLTraits_Core 20318.984 18959.033 20182.655 17683.717 18500.302 18439.182
Int16 SumSLLConstTraits 5899.256 5693.084 16944.673 19378.434 21059.682 19572.551
Int16 SumSLLConstTraits_Core 20172.952 19339.311 18407.673 19850.711 21232.279 18136.492
Int32 SumSLLScalar 803.506 820.639 1307.614 1328.703 2199.685 1587.071
Int32 SumSLLNetBcl 9469.894
Int32 SumSLLNetBcl_Const 10657.900
Int32 SumSLLTraits 2571.456 2678.866 8246.402 7799.748 8221.382 9594.126
Int32 SumSLLTraits_Core 8574.361 8465.712 10320.833 10408.381 10626.910 10035.217
Int32 SumSLLConstTraits 1493.590 2922.103 8155.046 9293.148 10579.400 10185.431
Int32 SumSLLConstTraits_Core 8467.974 8554.920 9784.699 10384.732 9790.898 10329.112
Int64 SumSLLScalar 797.703 816.504 1295.009 1305.611 2043.527 1535.809
Int64 SumSLLNetBcl 4143.077
Int64 SumSLLNetBcl_Const 4903.130
Int64 SumSLLTraits 426.950 458.517 3867.136 3941.999 3964.762 3713.754
Int64 SumSLLTraits_Core 441.378 463.537 4802.911 4813.018 4776.182 4653.104
Int64 SumSLLConstTraits 490.135 536.949 3929.109 4018.072 4725.293 4712.366
Int64 SumSLLConstTraits_Core 491.263 531.946 4930.099 4737.462 4782.430 4371.649

Description.

  • SumSLLScalar: Use scalar algorithm.
  • SumSLLNetBcl: Use the BCL method (Vector.ShiftLeft) with variable arguments. Note that this method is only available in .NET 7.0.
  • SumSLLNetBcl_Const: Use the BCL method (Vector.ShiftLeft) with constant arguments. Note that this method is only available in .NET 7.0.
  • SumSLLTraits: Use this library's normal method (Vectors.ShiftLeft) with variable arguments.
  • SumSLLTraits_Core: Use this library's Core suffixed methods (Vectors.ShiftLeft_Args, Vectors.ShiftLeft_Core) with variable arguments.
  • SumSLLConstTraits: Use this library's Const suffixed method (Vectors.ShiftLeft_Const) with constants arguments.
  • SumSLLConstTraits_Core: Use this library's ConstCore suffixed methods (Vectors.ShiftLeft_Args, Vectors.ShiftLeft_ConstCore) with constant arguments.

BCL's method (Vector.ShiftLeft) runs on X86 platform, only Int16/Int32/Int64 are hardware accelerated, while Byte is not hardware accelerated. This is probably because the Avx2 instruction set only has 16-64 bit left shift instructions, and does not provide other types of instructions, so the BCL is converted to a software algorithm. For these types of numbers, this library will replace them with efficient algorithms realized by combinations of other instructions. For example, for Byte type, SumSLLConstTraits_Core in . NET 7.0 has the value of 32872.874, which is 32872.874/1480.225≈22.2080 times the performance of scalar algorithm, and 32872.874/1137 times the performance of BCL method. 32872.874/1137.564≈28.8976times. Because X86 intrinsic functions have only been available since.NET Core 3.0. Therefore, for Int64 types, hardware acceleration is not available until after .NET Core 3.0`.

For ShiftLeft, when shiftAmount is a constant, the performance is generally better than when it is a variable. This is true for both BCL and this library methods. Using this library's Core suffix optimizes performance by moving some operations out of the loop to be processed earlier. When the CPU provides instructions with constant parameters (the technical term is "immediate parameters"), the performance of the instructions is generally higher. So the library also provides a ConstCore suffix method, which selects the fastest instruction for that platform. Sometimes the performance fluctuates due to "CPU Turbo Boost", "other processes taking CPU resources", etc. But rest assured, after checking the assembly instructions of the Release's program runtime, it is already running on the best hardware instructions. An example of this is the following figure.

Vectors.ShiftLeft_Core_use_inline.png

ShiftLeft - Arm - AWS Arm t4g.small
Type Method .NET Core 3.1 .NET 5.0 .NET 6.0 .NET 7.0
Byte SumSLLScalar 610.192 610.563 653.197 891.088
Byte SumSLLNetBcl 19580.464
Byte SumSLLNetBcl_Const 19599.073
Byte SumSLLTraits 5668.036 13252.891 13253.575 13241.598
Byte SumSLLTraits_Core 14341.895 15888.315 15887.520 19595.005
Byte SumSLLConstTraits 9946.663 13243.304 15895.672 19466.408
Byte SumSLLConstTraits_Core 13201.657 15896.748 15894.093 19447.318
Int16 SumSLLScalar 606.942 607.226 607.742 765.154
Int16 SumSLLNetBcl 9332.186
Int16 SumSLLNetBcl_Const 9240.256
Int16 SumSLLTraits 4231.310 6553.072 6603.431 9351.061
Int16 SumSLLTraits_Core 7881.834 7897.878 8449.502 9356.142
Int16 SumSLLConstTraits 6577.829 6620.078 8444.304 9359.246
Int16 SumSLLConstTraits_Core 8383.107 7923.119 8443.802 9317.663
Int32 SumSLLScalar 749.491 746.414 747.273 1403.533
Int32 SumSLLNetBcl 4537.804
Int32 SumSLLNetBcl_Const 4533.257
Int32 SumSLLTraits 3233.214 3531.441 3530.389 4545.497
Int32 SumSLLTraits_Core 3901.975 4140.171 4142.377 4505.555
Int32 SumSLLConstTraits 3510.471 3865.285 4134.108 4568.054
Int32 SumSLLConstTraits_Core 3905.829 3895.898 3896.719 4547.294
Int64 SumSLLScalar 743.187 742.685 743.760 1372.299
Int64 SumSLLNetBcl 2473.172
Int64 SumSLLNetBcl_Const 2468.456
Int64 SumSLLTraits 482.056 1637.232 1640.547 1981.831
Int64 SumSLLTraits_Core 488.072 1970.152 2088.793 2468.202
Int64 SumSLLConstTraits 467.942 1958.432 2099.095 2460.619
Int64 SumSLLConstTraits_Core 470.112 1971.898 2097.693 2465.419

Description.

  • SumSLLScalar: Use scalar algorithm.
  • SumSLLNetBcl: Use the BCL method (Vector.ShiftLeft) with variable arguments. Note that this method is only available in .NET 7.0.
  • SumSLLNetBcl_Const: Use the BCL method (Vector.ShiftLeft) with constant arguments. Note that this method is only available in .NET 7.0.
  • SumSLLTraits: Use this library's normal method (Vectors.ShiftLeft) with variable arguments.
  • SumSLLTraits_Core: Use this library's Core suffixed methods (Vectors.ShiftLeft_Args, Vectors.ShiftLeft_Core) with variable arguments.
  • SumSLLConstTraits: Use this library's Const suffixed method (Vectors.ShiftLeft_Const) with constants arguments.
  • SumSLLConstTraits_Core: Use this library's ConstCore suffixed methods (Vectors.ShiftLeft_Args, Vectors.ShiftLeft_ConstCore) with constant arguments.

The BCL method (Vector.ShiftLeft) runs on the Arm platform with hardware acceleration for integer types. The AdvSimd instruction set provides special instructions for left shifting of 8 to 64 bit integers. This library uses the same instructions when running on the Arm platform. The performance is close. Because Arm's intrinsic functions have only been available since .NET 5.0. The hardware acceleration for Int64 types is not available until after `.NET 5.0'.

ShiftRightArithmetic

ShiftRightArithmetic: Shifts (signed) each element of a vector right by the specified amount. It is a new vector method in .NET 7.0.

ShiftRightArithmetic - x86 - lntel Core i5-8250U
Type Method .NET Framework .NET Core 2.1 .NET Core 3.1 .NET 5.0 .NET 6.0 .NET 7.0
Int16 SumSRAScalar 823.804 827.734 1180.933 1182.307 1341.171 1592.939
Int16 SumSRANetBcl 18480.038
Int16 SumSRANetBcl_Const 21052.686
Int16 SumSRATraits 1557.132 1559.674 17325.184 17699.944 16372.799 17193.661
Int16 SumSRATraits_Core 1653.816 1653.714 18414.632 19664.147 17938.068 18476.248
Int16 SumSRAConstTraits 1672.258 1675.044 17658.703 20409.889 20233.738 20835.294
Int16 SumSRAConstTraits_Core 1714.582 1667.090 20076.043 20212.774 20994.717 21053.837
Int32 SumSRAScalar 825.056 829.789 1275.799 1342.349 1621.295 1620.315
Int32 SumSRANetBcl 10132.774
Int32 SumSRANetBcl_Const 11033.258
Int32 SumSRATraits 764.013 759.588 8195.470 8298.404 8314.921 9937.082
Int32 SumSRATraits_Core 826.612 825.854 10576.367 10449.535 9783.716 11108.074
Int32 SumSRAConstTraits 837.650 834.126 8484.959 9238.089 9979.236 10053.944
Int32 SumSRAConstTraits_Core 856.397 859.426 10201.125 10314.334 11009.384 10772.948
Int64 SumSRAScalar 815.238 811.645 1300.052 1280.982 1322.441 1602.916
Int64 SumSRANetBcl 578.499
Int64 SumSRANetBcl_Const 553.963
Int64 SumSRATraits 447.196 441.690 3032.903 2830.935 2988.130 2922.851
Int64 SumSRATraits_Core 459.781 458.269 3639.092 3352.255 3336.974 3488.018
Int64 SumSRAConstTraits 491.449 491.420 3074.926 2820.864 3365.642 3397.660
Int64 SumSRAConstTraits_Core 496.174 491.022 3660.380 3365.210 3398.657 3237.150
SByte SumSRAScalar 827.231 823.643 1101.518 1105.244 1348.340 1619.984
SByte SumSRANetBcl 1161.428
SByte SumSRANetBcl_Const 1156.552
SByte SumSRATraits 3108.569 3100.703 17944.555 17103.399 17926.975 20115.939
SByte SumSRATraits_Core 3298.491 3288.742 30742.095 30212.469 29604.498 33040.654
SByte SumSRAConstTraits 3320.813 3327.910 18297.669 25989.446 28437.425 31118.235
SByte SumSRAConstTraits_Core 3423.868 3427.681 29454.032 27559.316 30075.338 30565.076

Description.

  • SumSRAScalar: Use scalar algorithm.
  • SumSRANetBcl: Use the BCL method (Vector.ShiftRight) with variable arguments. Note that this method is only available in .NET 7.0.
  • SumSRANetBcl_Const: Use the BCL method (Vector.ShiftRight) with constant arguments. Note that this method is only available in .NET 7.0.
  • SumSRATraits: Use this library's normal method (Vectors.ShiftRight) with variable arguments.
  • SumSRATraits_Core: Use this library's Core suffixed methods (Vectors.ShiftRight_Args, Vectors.ShiftRight_Core) with variable arguments.
  • SumSRAConstTraits: Use this library's Const suffixed method (Vectors.ShiftRight_Const) with constants arguments.
  • SumSRAConstTraits_Core: Use this library's ConstCore suffixed methods (Vectors.ShiftRight_Args, Vectors.ShiftRight_ConstCore) with constant arguments.

The BCL method (Vector.ShiftRightArithmetic) runs on X86 platforms with hardware acceleration only for Int16/Int32, but not for SByte/Int64. This is probably because the Avx2 instruction set only has 16-32 bit arithmetic right shift instructions. For these types of numbers, this library replaces them with efficient algorithms that are implemented by a combination of other instructions. As of .NET Core 3.0, hardware acceleration is available.

ShiftRightArithmetic - Arm - AWS Arm t4g.small
Type Method .NET Core 3.1 .NET 5.0 .NET 6.0 .NET 7.0
Int16 SumSRAScalar 587.279 541.166 607.230 822.580
Int16 SumSRANetBcl 9941.333
Int16 SumSRANetBcl_Const 9938.477
Int16 SumSRATraits 1559.138 4950.480 5645.497 9938.217
Int16 SumSRATraits_Core 1823.509 8388.956 7904.366 9938.584
Int16 SumSRAConstTraits 1808.965 6589.881 7892.407 9871.343
Int16 SumSRAConstTraits_Core 1810.527 8392.943 7896.220 9925.543
Int32 SumSRAScalar 712.668 746.666 747.055 1188.551
Int32 SumSRANetBcl 4861.897
Int32 SumSRANetBcl_Const 4859.816
Int32 SumSRATraits 779.787 2944.169 2945.026 4868.865
Int32 SumSRATraits_Core 914.346 4125.748 4135.353 4862.075
Int32 SumSRAConstTraits 884.914 3266.272 3892.016 4841.364
Int32 SumSRAConstTraits_Core 920.389 4134.164 3893.088 4844.364
Int64 SumSRAScalar 717.640 742.361 742.337 1189.925
Int64 SumSRANetBcl 2468.196
Int64 SumSRANetBcl_Const 2471.434
Int64 SumSRATraits 451.956 1235.429 1233.818 1420.116
Int64 SumSRATraits_Core 435.180 1972.734 1966.992 2465.932
Int64 SumSRAConstTraits 437.799 1962.084 1966.946 2470.825
Int64 SumSRAConstTraits_Core 436.419 2099.303 2097.296 2469.149
SByte SumSRAScalar 577.766 610.669 672.786 925.515
SByte SumSRANetBcl 19792.701
SByte SumSRANetBcl_Const 19792.641
SByte SumSRATraits 2991.228 11281.229 11275.758 11356.994
SByte SumSRATraits_Core 3529.326 16818.297 16827.844 19798.924
SByte SumSRAConstTraits 3476.138 15680.873 16829.920 19774.470
SByte SumSRAConstTraits_Core 3577.927 16813.202 15762.243 19759.552

Description.

  • SumSRAScalar: Use scalar algorithm.
  • SumSRANetBcl: Use the BCL method (Vector.ShiftRight) with variable arguments. Note that this method is only available in .NET 7.0.
  • SumSRANetBcl_Const: Use the BCL method (Vector.ShiftRight) with constant arguments. Note that this method is only available in .NET 7.0.
  • SumSRATraits: Use this library's normal method (Vectors.ShiftRight) with variable arguments.
  • SumSRATraits_Core: Use this library's Core suffixed methods (Vectors.ShiftRight_Args, Vectors.ShiftRight_Core) with variable arguments.
  • SumSRAConstTraits: Use this library's Const suffixed method (Vectors.ShiftRight_Const) with constants arguments.
  • SumSRAConstTraits_Core: Use this library's ConstCore suffixed methods (Vectors.ShiftRight_Args, Vectors.ShiftRight_ConstCore) with constant arguments.

BCL methods (Vector.ShiftRightArithmetic) are hardware accelerated for integer types when running on Arm platforms. The AdvSimd instruction set provides special instructions for arithmetic right shifting of 8 to 64 bit integers. This library uses the same instructions when running on the Arm platform. The performance is similar. As of .NET 5.0, hardware acceleration is available.

Shuffle

Shuffle: Shuffle and clear. Creates a new vector by selecting values from an input vector using a set of indices. It is a new vector method in .NET 7.0. Since .NET 7.0, the Shuffle method has been provided in Vector128/Vector256, but the Shuffle method has not yet been provided in Vector.

Shuffle allows an index to exceed the valid range, and then sets the corresponding element to 0. This feature slows down performance a bit, so this library also provides the YShuffleKernel method (Only shuffle). If you want to make sure that the index is always within the valid range, it is faster to use YShuffleKernel.

Shuffle - x86 - lntel Core i5-8250U
Type Method .NET Framework .NET Core 2.1 .NET Core 3.1 .NET 5.0 .NET 6.0 .NET 7.0
Int16 SumScalar 1009.132 1007.748 992.299 1004.370 1034.912 989.043
Int16 Sum256_Bcl 775.841
Int16 SumTraits 1012.626 1008.900 6025.629 8058.075 8017.278 9060.106
Int16 SumTraits_Args0 1008.925 988.646 14845.370 14590.246 14413.193 14209.436
Int16 SumTraits_Args 1008.981 991.790 14644.219 14527.035 14198.718 14024.591
Int16 SumKernelTraits 1011.528 1009.289 7566.266 9381.227 9585.573 10330.592
Int16 SumKernelTraits_Args0 1006.331 989.488 15045.753 14575.460 14464.147 14484.413
Int16 SumKernelTraits_Args 1017.264 990.161 14900.553 13672.167 14556.627 14280.139
Int32 SumScalar 723.019 725.013 704.809 708.372 735.378 747.651
Int32 Sum256_Bcl 611.393
Int32 SumTraits 716.509 724.369 5216.757 5813.206 7139.337 9250.625
Int32 SumTraits_Args0 716.520 703.636 9278.507 9221.310 9159.683 9728.639
Int32 SumTraits_Args 722.854 709.654 9010.834 9164.854 8992.356 9828.623
Int32 SumKernelTraits 722.441 725.218 9554.766 7064.711 6932.192 9996.960
Int32 SumKernelTraits_Args0 724.689 706.345 11017.874 11092.301 11134.924 11279.116
Int32 SumKernelTraits_Args 727.981 701.155 11030.886 10970.116 10510.208 11324.558
Int64 SumScalar 459.881 457.952 188.562 477.806 459.242 462.021
Int64 Sum256_Bcl 515.863
Int64 SumTraits 459.302 459.876 2143.129 2518.325 2433.449 3524.309
Int64 SumTraits_Args0 465.064 441.576 4508.754 4449.098 4406.994 4484.512
Int64 SumTraits_Args 459.786 408.545 4466.028 4214.808 4293.438 4270.565
Int64 SumKernelTraits 460.058 458.858 2702.105 3195.810 1714.735 4046.124
Int64 SumKernelTraits_Args0 464.705 438.224 4820.767 4705.843 4042.262 4882.344
Int64 SumKernelTraits_Args 463.218 411.905 4884.277 5433.558 4140.529 4788.233
SByte SumScalar 1263.210 1262.732 844.749 1013.924 1077.513 1261.932
SByte Sum256_Bcl 930.329
SByte SumTraits 1264.393 1264.667 13239.408 17766.242 16140.964 24537.440
SByte SumTraits_Args0 1262.368 1242.503 31793.487 31423.344 31314.488 34322.789
SByte SumTraits_Args 1221.542 1248.121 31118.400 31615.120 31980.794 33156.240
SByte SumKernelTraits 1260.097 1266.056 19996.806 23032.250 23853.314 29612.169
SByte SumKernelTraits_Args0 1260.461 1245.530 31084.955 30974.022 31913.287 33643.052
SByte SumKernelTraits_Args 1260.272 1249.316 30827.152 30734.831 32311.418 32977.071

Description.

  • SumScalar: Use the scalar algorithm.
  • Sum256_Bcl: Use BCL methods (Vector256.Shuffle).
  • SumTraits: Use the normal methods of this library (Vectors.Shuffle).
  • SumTraits_Args0: Use this library's Core suffixed methods (Vectors.Shuffle_Args, Vectors.Shuffle_Core), without ValueTuple, use the "out" keyword to Returns multiple values.
  • SumTraits_Args: Use this library's Core suffixed methods (Vectors.Shuffle_Args, Vectors.Shuffle_Core), using ValueTuple.
  • SumKernelTraits: Use the normal methods of this library's YShuffleKernel (Vectors.YShuffleKernel).
  • SumKernelTraits_Args0: Use the Core suffixed methods of this library's YShuffleKernel (Vectors.YShuffleKernel_Args, Vectors.YShuffleKernel_Core), without ValueTuple, use the "out" keyword to return multiple values.
  • SumKernelTraits_Args: Use the Core suffixed methods of this library's YShuffleKernel (Vectors.YShuffleKernel_Args, Vectors.YShuffleKernel_Core), using ValueTuple.

BCL's method (Vector.Shuffle) runs on X86 platforms without hardware acceleration for all number types. This library replaces these types with efficient algorithms implemented by combinations of other instructions. As of .NET Core 3.0, hardware acceleration is available. Methods using this library's Core suffix optimize performance by moving some operations out of the loop to be processed earlier. This is especially true for the Shuffle method. YShuffleKernel can be used instead of Shuffle if you can ensure that the index is always in the valid range. It is faster. For Args suffixed methods, in addition to returning multiple values with the "out" keyword, ValueTuple can be used to receive multiple values, simplifying the code. However, be aware that ValueTuple can sometimes slow down performance.

Shuffle - Arm - AWS Arm t4g.small
Type Method .NET Core 3.1 .NET 5.0 .NET 6.0 .NET 7.0
Int16 SumScalar 424.835 422.286 423.070 526.071
Int16 Sum128_Bcl 482.320
Int16 SumTraits 423.942 4925.034 4938.077 5853.245
Int16 SumTraits_Args0 423.872 8381.395 7862.055 9821.786
Int16 SumTraits_Args 400.767 2982.755 2976.138 9769.321
Int16 Sum128_AdvSimd 3169.036 3115.859 3239.207
Int16 SumKernelTraits 424.317 5644.808 6565.519 7904.834
Int16 SumKernelTraits_Args0 423.899 7881.823 7847.868 9835.768
Int16 SumKernelTraits_Args 399.772 2982.013 2868.286 9778.383
Int32 SumScalar 288.211 281.081 276.668 317.268
Int32 Sum128_Bcl 303.702
Int32 SumTraits 287.942 2447.812 2561.501 2912.918
Int32 SumTraits_Args0 286.646 4103.084 4110.550 4796.704
Int32 SumTraits_Args 268.613 1487.180 1483.994 4775.891
Int32 SumKernelTraits 287.900 2805.355 3237.345 3909.519
Int32 SumKernelTraits_Args0 286.556 4112.689 4128.402 4825.180
Int32 SumKernelTraits_Args 268.858 1487.021 1430.400 4755.708
Int64 SumScalar 378.628 188.199 447.044 552.523
Int64 Sum128_Bcl 712.025
Int64 SumTraits 379.643 1015.811 1089.628 1242.552
Int64 SumTraits_Args0 380.133 2091.948 1967.766 2465.800
Int64 SumTraits_Args 326.603 743.033 744.908 2452.967
Int64 SumKernelTraits 379.696 1221.923 1480.182 1756.478
Int64 SumKernelTraits_Args0 379.788 2096.124 2095.536 2464.674
Int64 SumKernelTraits_Args 170.957 715.532 717.549 2457.398
SByte SumScalar 668.450 650.673 659.984 833.921
SByte Sum128_Bcl 648.985
SByte SumTraits 667.527 13135.356 16713.009 19730.059
SByte SumTraits_Args0 664.988 15734.264 15708.758 19741.441
SByte SumTraits_Args 625.410 5723.523 5948.766 19692.665
SByte SumKernelTraits 667.280 15584.505 15643.225 19741.523
SByte SumKernelTraits_Args0 664.914 16731.942 16685.534 19726.599
SByte SumKernelTraits_Args 625.761 5723.910 5950.549 19685.073

Description.

  • SumScalar: Use the scalar algorithm.
  • Sum128_Bcl: Use BCL methods (Vector128.Shuffle).
  • SumTraits: Use the normal methods of this library (Vectors.Shuffle).
  • SumTraits_Args0: Use this library's Core suffixed methods (Vectors.Shuffle_Args, Vectors.Shuffle_Core), without ValueTuple, use the "out" keyword to Returns multiple values.
  • SumTraits_Args: Use this library's Core suffixed methods (Vectors.Shuffle_Args, Vectors.Shuffle_Core), using ValueTuple.
  • SumKernelTraits: Use the normal methods of this library's YShuffleKernel (Vectors.YShuffleKernel).
  • SumKernelTraits_Args0: Use the Core suffixed methods of this library's YShuffleKernel (Vectors.YShuffleKernel_Args, Vectors.YShuffleKernel_Core), without ValueTuple, use the "out" keyword to return multiple values.
  • SumKernelTraits_Args: Use the Core suffixed methods of this library's YShuffleKernel (Vectors.YShuffleKernel_Args, Vectors.YShuffleKernel_Core), using ValueTuple.

BCL's method (Vector.Shuffle) runs on the Arm platform without hardware acceleration for all number types. This library replaces these types with efficient algorithms implemented by combinations of other instructions. As of .NET 5.0, hardware acceleration is available. Note that prior to .NET 7.0, SumTraits_Args sometimes had a large performance difference from SumTraits_Args0, due to the large performance loss of ValueTuple under Arm.

YNarrowSaturate

YNarrowSaturate: Saturate narrows two Vector instances into one Vector .

YNarrowSaturate - x86 - lntel Core i5-8250U
Type Method .NET Framework .NET Core 2.1 .NET Core 3.1 .NET 5.0 .NET 6.0 .NET 7.0
Int16 SumNarrow_If 209.442 209.620 210.928 199.480 211.138 215.694
Int16 SumNarrow_MinMax 202.714 215.451 212.224 214.893 175.099 219.752
Int16 SumNarrowVectorBase 13095.098 13774.472 13161.165 13013.472 13168.239 15964.293
Int16 SumNarrowVectorTraits 13024.364 13662.396 28118.834 25049.004 28198.282 27819.176
Int32 SumNarrow_If 210.834 212.404 213.735 214.810 208.985 222.597
Int32 SumNarrow_MinMax 212.099 211.786 210.670 205.029 210.333 208.573
Int32 SumNarrowVectorBase 6933.036 6441.062 6584.000 7382.254 6728.319 7703.530
Int32 SumNarrowVectorTraits 6856.456 6398.525 12533.505 14263.835 12888.771 13992.887
Int64 SumNarrow_If 195.128 186.841 195.864 199.460 193.475 204.264
Int64 SumNarrow_MinMax 189.209 178.971 196.065 191.231 191.600 203.201
Int64 SumNarrowVectorBase 1959.806 1878.724 2000.976 2118.858 1976.264 2658.885
Int64 SumNarrowVectorTraits 1956.908 1872.465 2587.636 2763.282 2689.931 2418.496
UInt16 SumNarrow_If 1066.840 902.516 1078.540 974.749 1067.768 1083.124
UInt16 SumNarrow_MinMax 1066.895 903.120 901.484 959.577 900.228 823.878
UInt16 SumNarrowVectorBase 16884.658 17052.914 15147.602 17094.243 17200.043 19717.119
UInt16 SumNarrowVectorTraits 16862.587 16975.925 21142.034 26121.170 26440.908 24575.123
UInt32 SumNarrow_If 1116.417 961.764 856.272 901.272 872.811 1111.046
UInt32 SumNarrow_MinMax 1115.502 902.014 900.357 877.358 839.361 854.364
UInt32 SumNarrowVectorBase 7824.674 7015.984 8617.594 8176.926 8059.923 8801.283
UInt32 SumNarrowVectorTraits 7879.556 7024.438 12181.180 10713.260 11063.765 11314.953
UInt64 SumNarrow_If 997.327 847.431 871.820 875.547 858.060 1109.023
UInt64 SumNarrow_MinMax 865.420 1083.437 1107.671 1095.561 886.387 735.609
UInt64 SumNarrowVectorBase 2015.328 1971.981 1833.610 2446.346 2636.137 3336.732
UInt64 SumNarrowVectorTraits 2020.405 1979.078 2918.828 3258.796 3341.184 3108.173

Description.

  • SumNarrow_If: Use scalar algorithm based on if statements.
  • SumNarrow_MinMax: Use scalar algorithm based on the Min/Max methods of the Math class.
  • SumNarrowVectorBase: Use this library's base method (VectorTraitsBase.Statics.YNarrowSaturate). It is implemented by combining vector methods using BCL, and can take advantage of hardware acceleration.
  • SumNarrowVectorTraits: Use this library's traits method (Vectors.YNarrowSaturate). It is implemented as an intrinsic function, allowing for better hardware acceleration.

For 16-32 bit integers, SumNarrowVectorTraits are much better than SumNarrowVectorBase after .NET Core 3.1. This is because X86 provides specialized instructions. For 64-bit integers (Int64/UInt64), X86 does not provide an equivalent instruction. However, the SumNarrowVectorTraits version of the code uses a better intrinsic function algorithm, so it still outperforms SumNarrowVectorBase in many cases.

YNarrowSaturate - Arm - AWS Arm t4g.small
Type Method .NET Core 3.1 .NET 5.0 .NET 6.0 .NET 7.0
Int16 SumNarrow_If 154.717 163.350 157.517 181.894
Int16 SumNarrow_MinMax 160.654 161.130 108.656 184.712
Int16 SumNarrowVectorBase 6124.516 5210.880 6055.721 7165.511
Int16 SumNarrowVectorTraits 6125.113 13574.329 13433.471 15507.867
Int32 SumNarrow_If 163.905 165.250 160.416 190.897
Int32 SumNarrow_MinMax 155.399 155.059 159.092 195.986
Int32 SumNarrowVectorBase 2701.810 3219.290 2766.267 3025.432
Int32 SumNarrowVectorTraits 2703.709 6306.022 6210.719 8003.142
Int64 SumNarrow_If 161.985 162.089 160.805 205.371
Int64 SumNarrow_MinMax 154.244 153.980 165.349 197.005
Int64 SumNarrowVectorBase 716.880 1189.192 1156.627 1229.301
Int64 SumNarrowVectorTraits 716.661 3282.455 3283.969 3921.550
UInt16 SumNarrow_If 525.100 530.550 525.952 608.947
UInt16 SumNarrow_MinMax 528.430 527.506 539.088 609.259
UInt16 SumNarrowVectorBase 7945.777 8739.615 7945.913 8916.311
UInt16 SumNarrowVectorTraits 7943.115 14158.586 14166.207 13814.007
UInt32 SumNarrow_If 544.871 540.266 538.649 621.107
UInt32 SumNarrow_MinMax 541.719 536.718 535.769 621.414
UInt32 SumNarrowVectorBase 4001.590 4022.504 3954.723 4379.473
UInt32 SumNarrowVectorTraits 4018.815 6824.637 6400.947 6722.416
UInt64 SumNarrow_If 620.408 620.900 622.076 828.917
UInt64 SumNarrow_MinMax 620.012 619.806 622.201 828.565
UInt64 SumNarrowVectorBase 1291.051 1863.543 1869.904 1816.732
UInt64 SumNarrowVectorTraits 1293.997 3233.726 3491.369 3501.256

Description.

  • SumNarrow_If: Use scalar algorithm based on if statements.
  • SumNarrow_MinMax: Use scalar algorithm based on the Min/Max methods of the Math class.
  • SumNarrowVectorBase: Use this library's base method (VectorTraitsBase.Statics.YNarrowSaturate). It is implemented by combining vector methods using BCL, and can take advantage of hardware acceleration.
  • SumNarrowVectorTraits: Use this library's traits method (Vectors.YNarrowSaturate). It is implemented as an intrinsic function, allowing for better hardware acceleration.

Since .NET 5.0, the Arm intrinsic function is provided. Therefore, starting from NET 5.0, SumNarrowVectorTraits are much more powerful than SumNarrowVectorBase.

More results

See: BenchmarkResults

Documentation

  • Traits method list: TraitsMethodList
  • DocFX: Run docfx_serve.bat. Then browse http://localhost:8080/ .
  • Doxygen: Run the Doxywizard and click File →Open on the menu bar. Select the Doxyfile file and click "OK". Click on the "Run" tab and click on the "Run doxygen" button. It will generate documents in the "doc_gen" folder.

ChangeLog

Full list: ChangeLog

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 is compatible.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 is compatible.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
.NET Core netcoreapp1.0 was computed.  netcoreapp1.1 was computed.  netcoreapp2.0 was computed.  netcoreapp2.1 was computed.  netcoreapp2.2 was computed.  netcoreapp3.0 is compatible.  netcoreapp3.1 was computed. 
.NET Standard netstandard1.1 is compatible.  netstandard1.2 was computed.  netstandard1.3 was computed.  netstandard1.4 was computed.  netstandard1.5 was computed.  netstandard1.6 was computed.  netstandard2.0 is compatible.  netstandard2.1 was computed. 
.NET Framework net45 was computed.  net451 was computed.  net452 was computed.  net46 was computed.  net461 was computed.  net462 was computed.  net463 was computed.  net47 was computed.  net471 was computed.  net472 was computed.  net48 was computed.  net481 was computed. 
MonoAndroid monoandroid was computed. 
MonoMac monomac was computed. 
MonoTouch monotouch was computed. 
Tizen tizen30 was computed.  tizen40 was computed.  tizen60 was computed. 
Universal Windows Platform uap was computed.  uap10.0 was computed. 
Windows Phone wpa81 was computed. 
Windows Store netcore was computed.  netcore45 was computed.  netcore451 was computed. 
Xamarin.iOS xamarinios was computed. 
Xamarin.Mac xamarinmac was computed. 
Xamarin.TVOS xamarintvos was computed. 
Xamarin.WatchOS xamarinwatchos was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
3.0.0 134 11/9/2024
2.0.0 162 3/17/2024
1.0.0 211 9/7/2023