Tensor 0.4.11

.NET Standard 2.0
Install-Package Tensor -Version 0.4.11
dotnet add package Tensor --version 0.4.11
<PackageReference Include="Tensor" Version="0.4.11" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Tensor --version 0.4.11
The NuGet Team does not provide support for this client. Please contact its maintainers for support.
#r "nuget: Tensor, 0.4.11"
#r directive can be used in F# Interactive, C# scripting and .NET Interactive. Copy this into the interactive tool or source code of the script to reference the package.
// Install Tensor as a Cake Addin
#addin nuget:?package=Tensor&version=0.4.11

// Install Tensor as a Cake Tool
#tool nuget:?package=Tensor&version=0.4.11
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Tensor (n-dimensional array) library for F#

     Core features:
       - n-dimensional arrays (tensors) in host memory or on CUDA GPUs
       - element-wise operations (addition, multiplication, absolute value, etc.)
       - basic linear algebra operations (dot product, SVD decomposition, matrix inverse, etc.)
       - reduction operations (sum, product, average, maximum, arg max, etc.)
       - logic operations (comparision, and, or, etc.)
       - views, slicing, reshaping, broadcasting (similar to NumPy)
       - scatter and gather by indices
       - standard functional operations (map, fold, etc.)

     Data exchange:
       - read/write support for HDF5 (.h5)
       - interop with standard F# types (Seq, List, Array, Array2D, Array3D, etc.)

     Performance:
       - host: SIMD and BLAS accelerated operations
         - by default Intel MKL is used (shipped with NuGet package)
         - other BLASes (OpenBLAS, vendor-specific) can be selected by configuration option
       - CUDA GPU: all operations performed locally on GPU and cuBLAS used for matrix operations

     Requirements:
       - Linux, MacOS or Windows on x64
       - Linux requires libgomp.so.1 installed.

     Additional algorithms are provided in the Tensor.Algorithm package.

Product Versions
.NET net5.0 net5.0-windows net6.0 net6.0-android net6.0-ios net6.0-maccatalyst net6.0-macos net6.0-tvos net6.0-windows
.NET Core netcoreapp2.0 netcoreapp2.1 netcoreapp2.2 netcoreapp3.0 netcoreapp3.1
.NET Standard netstandard2.0 netstandard2.1
.NET Framework net461 net462 net463 net47 net471 net472 net48
MonoAndroid monoandroid
MonoMac monomac
MonoTouch monotouch
Tizen tizen40 tizen60
Xamarin.iOS xamarinios
Xamarin.Mac xamarinmac
Xamarin.TVOS xamarintvos
Xamarin.WatchOS xamarinwatchos
Compatible target framework(s)
Additional computed target framework(s)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (3)

Showing the top 3 NuGet packages that depend on Tensor:

Package Downloads
DeepNet

Deep learning library for F#. Provides symbolic model differentiation, automatic differentiation and compilation to CUDA GPUs. Includes optimizers and model blocks used in deep learning. Make sure to set the platform of your project to x64.

RPlotTools

Tools for plotting using R from F#.

Tensor.Algorithm

Data types: - arbitrary precision rational numbers Matrix algebra (integer, rational): - Row echelon form - Smith normal form - Kernel, cokernel and (pseudo-)inverse Matrix decomposition (floating point): - Principal component analysis (PCA) - ZCA whitening Misc: - Bezout's identity - Loading of NumPy's .npy and .npz files.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
0.4.11 5,066 5/8/2018
0.4.11-v0.4.11-215 522 5/8/2018
0.4.11-symtensor-core-242 618 11/15/2018
0.4.11-symtensor-core-241 570 11/15/2018
0.4.11-symtensor-core-240 579 11/15/2018
0.4.11-symtensor-core-239 570 11/15/2018
0.4.11-symtensor-core-238 573 11/15/2018
0.4.11-symtensor-core-237 608 11/15/2018
0.4.11-symtensor-core-236 556 11/14/2018
0.4.11-symtensor-core-235 569 11/14/2018
0.4.11-symtensor-core-234 571 11/14/2018
0.4.11-symtensor-core-231 579 11/9/2018
0.4.11-symtensor-core-230 597 11/9/2018
0.4.11-symtensor-core-229 555 11/8/2018
0.4.11-symtensor-core-228 566 11/8/2018
0.4.11-symtensor-core-227 606 10/30/2018
0.4.11-symtensor-core-226 615 10/30/2018
0.4.11-symtensor-core-225 542 10/30/2018
0.4.11-develop-216 760 5/8/2018
0.4.10-develop-213 763 5/8/2018
0.4.10-develop-212 749 5/7/2018
0.4.10-develop-211 771 5/7/2018
0.3.0.712-master 630 9/1/2017
0.3.0.711-master 635 9/1/2017
0.3.0.710-master 611 9/1/2017
0.3.0.709-master 596 8/31/2017
0.3.0.708-master 623 8/30/2017
0.3.0.707-master 643 8/30/2017
0.3.0.706-master 620 8/30/2017
0.3.0.701-master 657 6/26/2017
0.3.0.700-master 672 6/22/2017
0.3.0.699-master 648 6/22/2017
0.3.0.698-master 644 6/21/2017
0.3.0.697-master 644 6/21/2017
0.3.0.696-master 677 6/21/2017
0.3.0.695-master 645 6/21/2017
0.3.0.694-master 639 6/21/2017
0.3.0.693-master 649 6/20/2017
0.3.0.692-master 635 6/19/2017
0.3.0.691-master 664 6/19/2017
0.3.0.690-master 656 6/19/2017
0.3.0.689-master 644 5/14/2017
0.3.0.688 6,240 5/14/2017
0.3.0.686-master 653 5/14/2017
0.2.0.591-master 649 4/19/2017
0.2.0.565-master 666 4/11/2017
0.2.0.556-master 648 3/21/2017
0.2.0.551-master 706 3/17/2017
0.2.0.540-master 644 3/15/2017
0.2.0.536-master 636 3/14/2017
0.2.0.519-master 662 3/2/2017
0.2.0.516-master 641 3/2/2017
0.2.0.499-master 664 2/13/2017
0.2.0.494-master 640 2/7/2017
0.2.0.479-master 662 2/1/2017
0.2.0.463-master 657 1/17/2017
0.2.0.431-master 735 12/2/2016
0.2.0.422-master 1,032 11/9/2016
0.2.0.421-master 969 11/9/2016
0.2.0.411-master 708 10/26/2016
0.2.0.400-master 663 10/26/2016
0.2.0.394-master 686 10/25/2016
0.2.0.382-master 672 10/21/2016
0.2.0.377-master 662 10/20/2016
0.2.0.323-master 653 10/11/2016
0.2.0.262-master 681 9/29/2016
0.2.0.248-master 680 9/27/2016
0.2.0.174-master 689 9/16/2016
0.2.0.128-master 687 9/8/2016
0.2.0.122-master 689 9/8/2016
0.2.0.121-master 669 9/7/2016
0.2.0.111-master 663 9/7/2016
0.2.0.105-ci 724 9/5/2016
0.2.0.97-ci 712 8/30/2016
0.2.0.96-ci 691 8/29/2016
0.2.0.90-ci 677 8/25/2016
0.2.0.89-ci 667 8/24/2016
0.2.0.88-ci 678 8/24/2016
0.2.0.87-ci 687 8/24/2016
0.2.0.86-ci 678 8/23/2016
0.2.0.85-ci 682 8/22/2016
0.2.0.84-ci 689 8/22/2016
0.2.0.83-ci 698 8/22/2016
0.2.0.82 1,554 8/22/2016
0.2.0.81-ci 705 8/19/2016
0.2.0.80-ci 706 6/27/2016
0.2.0.79-ci 695 6/27/2016
0.2.0.77-ci 697 6/22/2016
0.2.0.76-ci 708 6/22/2016
0.2.0.75 1,052 6/15/2016
0.2.0.74-ci 1,050 6/15/2016
0.2.0.73 1,259 6/15/2016
0.2.0.72 1,266 6/15/2016
0.2.0.71 1,231 6/14/2016
0.2.0.70 1,133 6/9/2016
0.2.0.69 1,100 6/9/2016
0.2.0.68 906 6/9/2016
0.2.0.67 1,388 6/8/2016
0.2.0.66-ci 698 6/8/2016
0.2.0.65-ci 702 6/8/2016
0.2.0.64-ci 747 6/8/2016
0.2.0.63-ci 681 6/7/2016
0.2.0.62 921 6/7/2016
0.2.0.61 901 6/6/2016
0.2.0.60 889 6/6/2016
0.2.0.59 883 6/6/2016
0.2.0.57 916 6/3/2016
0.2.0.56 888 6/3/2016
0.2.0.55 975 6/3/2016
0.2.0.54 916 6/3/2016
0.2.0.53 1,252 6/3/2016
0.2.0.52-ci 675 6/2/2016
0.2.0.51-ci 701 6/2/2016
0.2.0.50-ci 705 6/2/2016
0.2.0.49 1,259 5/31/2016
0.2.0.48-ci 741 5/31/2016
0.2.0.46-ci 718 5/31/2016
0.2.0.45 1,017 5/31/2016
0.2.0.44 1,028 5/31/2016
0.2.0.43 1,023 5/31/2016
0.2.0.42 1,023 5/30/2016
0.2.0.41 1,035 5/30/2016
0.2.0.40 1,042 5/30/2016
0.2.0.39 1,032 5/30/2016
0.2.0.38 1,015 5/30/2016
0.2.0.37 987 5/30/2016
0.2.0.36 993 5/25/2016
0.2.0.35 1,004 5/24/2016
0.2.0.34 1,046 5/24/2016
0.2.0.33 1,831 5/24/2016
0.2.0.32-ci 706 5/24/2016
0.1.26-ci 727 5/24/2016
0.1.24-ci 720 5/24/2016
0.1.19-ci 699 5/24/2016