Tensor 0.4.11

.NET Standard 2.0
Install-Package Tensor -Version 0.4.11
dotnet add package Tensor --version 0.4.11
<PackageReference Include="Tensor" Version="0.4.11" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Tensor --version 0.4.11
The NuGet Team does not provide support for this client. Please contact its maintainers for support.
#r "nuget: Tensor, 0.4.11"
#r directive can be used in F# Interactive, C# scripting and .NET Interactive. Copy this into the interactive tool or source code of the script to reference the package.
// Install Tensor as a Cake Addin
#addin nuget:?package=Tensor&version=0.4.11

// Install Tensor as a Cake Tool
#tool nuget:?package=Tensor&version=0.4.11
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Tensor (n-dimensional array) library for F#

     Core features:
       - n-dimensional arrays (tensors) in host memory or on CUDA GPUs
       - element-wise operations (addition, multiplication, absolute value, etc.)
       - basic linear algebra operations (dot product, SVD decomposition, matrix inverse, etc.)
       - reduction operations (sum, product, average, maximum, arg max, etc.)
       - logic operations (comparision, and, or, etc.)
       - views, slicing, reshaping, broadcasting (similar to NumPy)
       - scatter and gather by indices
       - standard functional operations (map, fold, etc.)

     Data exchange:
       - read/write support for HDF5 (.h5)
       - interop with standard F# types (Seq, List, Array, Array2D, Array3D, etc.)

     Performance:
       - host: SIMD and BLAS accelerated operations
         - by default Intel MKL is used (shipped with NuGet package)
         - other BLASes (OpenBLAS, vendor-specific) can be selected by configuration option
       - CUDA GPU: all operations performed locally on GPU and cuBLAS used for matrix operations

     Requirements:
       - Linux, MacOS or Windows on x64
       - Linux requires libgomp.so.1 installed.

     Additional algorithms are provided in the Tensor.Algorithm package.

Product Versions
.NET net5.0 net5.0-windows net6.0 net6.0-android net6.0-ios net6.0-maccatalyst net6.0-macos net6.0-tvos net6.0-windows
.NET Core netcoreapp2.0 netcoreapp2.1 netcoreapp2.2 netcoreapp3.0 netcoreapp3.1
.NET Standard netstandard2.0 netstandard2.1
.NET Framework net461 net462 net463 net47 net471 net472 net48
MonoAndroid monoandroid
MonoMac monomac
MonoTouch monotouch
Tizen tizen40 tizen60
Xamarin.iOS xamarinios
Xamarin.Mac xamarinmac
Xamarin.TVOS xamarintvos
Xamarin.WatchOS xamarinwatchos
Compatible target framework(s)
Additional computed target framework(s)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (3)

Showing the top 3 NuGet packages that depend on Tensor:

Package Downloads
DeepNet

Deep learning library for F#. Provides symbolic model differentiation, automatic differentiation and compilation to CUDA GPUs. Includes optimizers and model blocks used in deep learning. Make sure to set the platform of your project to x64.

RPlotTools

Tools for plotting using R from F#.

Tensor.Algorithm

Data types: - arbitrary precision rational numbers Matrix algebra (integer, rational): - Row echelon form - Smith normal form - Kernel, cokernel and (pseudo-)inverse Matrix decomposition (floating point): - Principal component analysis (PCA) - ZCA whitening Misc: - Bezout's identity - Loading of NumPy's .npy and .npz files.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
0.4.11 5,077 5/8/2018
0.4.11-v0.4.11-215 524 5/8/2018
0.4.11-symtensor-core-242 620 11/15/2018
0.4.11-symtensor-core-241 572 11/15/2018
0.4.11-symtensor-core-240 581 11/15/2018
0.4.11-symtensor-core-239 572 11/15/2018
0.4.11-symtensor-core-238 575 11/15/2018
0.4.11-symtensor-core-237 610 11/15/2018
0.4.11-symtensor-core-236 558 11/14/2018
0.4.11-symtensor-core-235 571 11/14/2018
0.4.11-symtensor-core-234 573 11/14/2018
0.4.11-symtensor-core-231 581 11/9/2018
0.4.11-symtensor-core-230 599 11/9/2018
0.4.11-symtensor-core-229 557 11/8/2018
0.4.11-symtensor-core-228 568 11/8/2018
0.4.11-symtensor-core-227 608 10/30/2018
0.4.11-symtensor-core-226 617 10/30/2018
0.4.11-symtensor-core-225 544 10/30/2018
0.4.11-develop-216 762 5/8/2018
0.4.10-develop-213 765 5/8/2018
0.4.10-develop-212 751 5/7/2018
0.4.10-develop-211 773 5/7/2018
0.3.0.712-master 632 9/1/2017
0.3.0.711-master 637 9/1/2017
0.3.0.710-master 613 9/1/2017
0.3.0.709-master 598 8/31/2017
0.3.0.708-master 625 8/30/2017
0.3.0.707-master 645 8/30/2017
0.3.0.706-master 622 8/30/2017
0.3.0.701-master 659 6/26/2017
0.3.0.700-master 674 6/22/2017
0.3.0.699-master 650 6/22/2017
0.3.0.698-master 646 6/21/2017
0.3.0.697-master 646 6/21/2017
0.3.0.696-master 679 6/21/2017
0.3.0.695-master 647 6/21/2017
0.3.0.694-master 641 6/21/2017
0.3.0.693-master 651 6/20/2017
0.3.0.692-master 637 6/19/2017
0.3.0.691-master 666 6/19/2017
0.3.0.690-master 658 6/19/2017
0.3.0.689-master 646 5/14/2017
0.3.0.688 6,257 5/14/2017
0.3.0.686-master 655 5/14/2017
0.2.0.591-master 651 4/19/2017
0.2.0.565-master 668 4/11/2017
0.2.0.556-master 650 3/21/2017
0.2.0.551-master 708 3/17/2017
0.2.0.540-master 646 3/15/2017
0.2.0.536-master 638 3/14/2017
0.2.0.519-master 664 3/2/2017
0.2.0.516-master 643 3/2/2017
0.2.0.499-master 666 2/13/2017
0.2.0.494-master 642 2/7/2017
0.2.0.479-master 664 2/1/2017
0.2.0.463-master 659 1/17/2017
0.2.0.431-master 737 12/2/2016
0.2.0.422-master 1,034 11/9/2016
0.2.0.421-master 971 11/9/2016
0.2.0.411-master 710 10/26/2016
0.2.0.400-master 665 10/26/2016
0.2.0.394-master 688 10/25/2016
0.2.0.382-master 674 10/21/2016
0.2.0.377-master 664 10/20/2016
0.2.0.323-master 655 10/11/2016
0.2.0.262-master 683 9/29/2016
0.2.0.248-master 682 9/27/2016
0.2.0.174-master 691 9/16/2016
0.2.0.128-master 689 9/8/2016
0.2.0.122-master 691 9/8/2016
0.2.0.121-master 671 9/7/2016
0.2.0.111-master 665 9/7/2016
0.2.0.105-ci 726 9/5/2016
0.2.0.97-ci 714 8/30/2016
0.2.0.96-ci 693 8/29/2016
0.2.0.90-ci 679 8/25/2016
0.2.0.89-ci 669 8/24/2016
0.2.0.88-ci 680 8/24/2016
0.2.0.87-ci 689 8/24/2016
0.2.0.86-ci 680 8/23/2016
0.2.0.85-ci 684 8/22/2016
0.2.0.84-ci 691 8/22/2016
0.2.0.83-ci 700 8/22/2016
0.2.0.82 1,570 8/22/2016
0.2.0.81-ci 707 8/19/2016
0.2.0.80-ci 708 6/27/2016
0.2.0.79-ci 697 6/27/2016
0.2.0.77-ci 699 6/22/2016
0.2.0.76-ci 710 6/22/2016
0.2.0.75 1,065 6/15/2016
0.2.0.74-ci 1,052 6/15/2016
0.2.0.73 1,270 6/15/2016
0.2.0.72 1,283 6/15/2016
0.2.0.71 1,243 6/14/2016
0.2.0.70 1,147 6/9/2016
0.2.0.69 1,107 6/9/2016
0.2.0.68 916 6/9/2016
0.2.0.67 1,409 6/8/2016
0.2.0.66-ci 700 6/8/2016
0.2.0.65-ci 704 6/8/2016
0.2.0.64-ci 749 6/8/2016
0.2.0.63-ci 683 6/7/2016
0.2.0.62 935 6/7/2016
0.2.0.61 908 6/6/2016
0.2.0.60 891 6/6/2016
0.2.0.59 893 6/6/2016
0.2.0.57 926 6/3/2016
0.2.0.56 900 6/3/2016
0.2.0.55 984 6/3/2016
0.2.0.54 925 6/3/2016
0.2.0.53 1,263 6/3/2016
0.2.0.52-ci 677 6/2/2016
0.2.0.51-ci 703 6/2/2016
0.2.0.50-ci 707 6/2/2016
0.2.0.49 1,272 5/31/2016
0.2.0.48-ci 743 5/31/2016
0.2.0.46-ci 720 5/31/2016
0.2.0.45 1,029 5/31/2016
0.2.0.44 1,036 5/31/2016
0.2.0.43 1,035 5/31/2016
0.2.0.42 1,050 5/30/2016
0.2.0.41 1,051 5/30/2016
0.2.0.40 1,071 5/30/2016
0.2.0.39 1,048 5/30/2016
0.2.0.38 1,035 5/30/2016
0.2.0.37 1,002 5/30/2016
0.2.0.36 1,004 5/25/2016
0.2.0.35 1,023 5/24/2016
0.2.0.34 1,057 5/24/2016
0.2.0.33 1,854 5/24/2016
0.2.0.32-ci 708 5/24/2016
0.1.26-ci 729 5/24/2016
0.1.24-ci 722 5/24/2016
0.1.19-ci 701 5/24/2016