MathNet.Numerics.FSharp 3.10.0

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports F# 3.0 on .Net 4.0, .Net 3.5 and Mono on Windows, Linux and Mac; Silverlight 5 and Windows 8 with PCL portable profile 47; Android/iOS with Xamarin.

There is a newer version of this package available.
See the version list below for details.
Install-Package MathNet.Numerics.FSharp -Version 3.10.0
dotnet add package MathNet.Numerics.FSharp --version 3.10.0
<PackageReference Include="MathNet.Numerics.FSharp" Version="3.10.0" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add MathNet.Numerics.FSharp --version 3.10.0
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Release Notes

Statistics: single-precision floating point support.
Statistics: very limited support for int32 and complex numbers.
Statistics: Min/Max Absolute, MagnitudePhase (complex).
Statistics: FiveNumberSummary to use actual Median instead of R8 quantile.
Linear Algebra: matrix Rank to use relative epsilon.
Linera Algebra: extensions to convert between single/double precision, complex/real.
Linear Algebra: Vector/Matrix storage DataContracts for ephemeral serialization.
Regression: more helpful exceptions and messages.
Random: 'Next' integer sampling no longer involves floating points, avoids one-off error in MersenneTwister.
Precision: EpsilonOf for single-precision numbers, drop no longer needed portable fallbacks.

Showing the top 2 GitHub repositories that depend on MathNet.Numerics.FSharp:

Repository Stars
mathnet/mathnet-numerics
Math.NET Numerics
NethermindEth/nethermind
Our flagship .NET Core Ethereum client for Linux, Windows, MacOs - full and actively developed

Read more about the GitHub Usage information on our documentation.

Version History

Version Downloads Last updated
4.9.0 22,769 10/13/2019
4.8.1 15,703 6/11/2019
4.8.0 1,400 6/2/2019
4.8.0-beta02 107 5/30/2019
4.8.0-beta01 133 4/28/2019
4.7.0 31,639 11/11/2018
4.6.0 1,859 10/19/2018
4.5.1 18,650 5/22/2018
4.5.0 319 5/22/2018
4.4.1 597 5/6/2018
4.4.0 11,326 2/25/2018
4.3.0 348 2/24/2018
4.2.0 832 2/21/2018
4.1.0 585 2/19/2018
4.0.0 2,271 2/11/2018
4.0.0-beta07 302 2/10/2018
4.0.0-beta06 311 2/3/2018
4.0.0-beta05 307 1/22/2018
4.0.0-beta04 326 1/13/2018
4.0.0-beta03 312 1/9/2018
4.0.0-beta02 390 1/7/2018
4.0.0-beta01 285 1/7/2018
4.0.0-alpha04 280 1/5/2018
4.0.0-alpha03 283 12/26/2017
4.0.0-alpha02 299 11/30/2017
4.0.0-alpha01 262 11/26/2017
3.20.2 3,862 1/22/2018
3.20.1 524 1/13/2018
3.20.0 33,427 7/15/2017
3.20.0-beta01 333 5/31/2017
3.19.0 5,527 4/29/2017
3.18.0 4,165 4/9/2017
3.17.0 8,182 1/15/2017
3.16.0 910 1/3/2017
3.15.0 463 12/27/2016
3.14.0-beta03 349 11/20/2016
3.14.0-beta02 322 11/15/2016
3.14.0-beta01 360 10/30/2016
3.13.1 56,545 9/6/2016
3.13.0 725 8/18/2016
3.12.0 2,705 7/3/2016
3.11.1 2,505 4/24/2016
3.11.0 5,145 2/13/2016
3.10.0 3,559 12/30/2015
3.9.0 1,850 11/25/2015
3.8.0 21,321 9/26/2015
3.7.1 3,203 9/21/2015
3.7.0 7,928 5/9/2015
3.6.0 1,648 3/22/2015
3.5.0 2,310 1/10/2015
3.4.0 594 1/4/2015
3.3.0 1,626 11/26/2014
3.3.0-beta2 392 10/25/2014
3.3.0-beta1 448 9/28/2014
3.2.3 22,281 9/6/2014
3.2.2 464 9/5/2014
3.2.1 649 8/5/2014
3.2.0 432 8/5/2014
3.1.0 3,159 7/20/2014
3.0.2 841 6/26/2014
3.0.1 478 6/24/2014
3.0.0 956 6/21/2014
3.0.0-beta05 462 6/20/2014
3.0.0-beta04 433 6/15/2014
3.0.0-beta03 446 6/5/2014
3.0.0-beta02 436 5/29/2014
3.0.0-beta01 763 4/14/2014
3.0.0-alpha9 433 3/29/2014
3.0.0-alpha8 436 2/26/2014
3.0.0-alpha7 496 12/30/2013
3.0.0-alpha6 561 12/2/2013
3.0.0-alpha5 540 10/2/2013
3.0.0-alpha4 491 9/22/2013
3.0.0-alpha1 436 9/1/2013
2.6.0 8,033 7/26/2013
2.5.0 1,108 4/14/2013
2.4.0 800 2/3/2013
2.3.0 765 11/25/2012
2.2.1 793 8/29/2012
2.2.0 572 8/27/2012
2.1.2 2,410 10/9/2011
2.1.1 740 10/3/2011
2.1.0.19 712 10/3/2011
Show less