MathNet.Numerics.FSharp 3.12.0

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports F# 3.0 on .Net 4.0, .Net 3.5 and Mono on Windows, Linux and Mac; Silverlight 5 and Windows 8 with PCL portable profile 47; Android/iOS with Xamarin.

There is a newer version of this package available.
See the version list below for details.
Install-Package MathNet.Numerics.FSharp -Version 3.12.0
dotnet add package MathNet.Numerics.FSharp --version 3.12.0
<PackageReference Include="MathNet.Numerics.FSharp" Version="3.12.0" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add MathNet.Numerics.FSharp --version 3.12.0
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Release Notes

ODE Solver: Runge-Kutta (order 2, 4) and Adams-Bashforth (order 1-4) algorithms ~Yoonku Hwang
Linear Algebra: faster multiplication of sparse with dense matrices ~Arthur
BUG: Integration: Gauss-Legendre on order 256 ~Sergey Kosukhin
BUG: Distributions: ChiSquared sampling was taking a square root where it should not ~Florian Wechsung

Showing the top 2 GitHub repositories that depend on MathNet.Numerics.FSharp:

Repository Stars
mathnet/mathnet-numerics
Math.NET Numerics
NethermindEth/nethermind
Our flagship .NET Core Ethereum client for Linux, Windows, MacOs - full and actively developed

Read more about the GitHub Usage information on our documentation.

Version History

Version Downloads Last updated
4.9.0 26,571 10/13/2019
4.8.1 17,088 6/11/2019
4.8.0 1,430 6/2/2019
4.8.0-beta02 115 5/30/2019
4.8.0-beta01 142 4/28/2019
4.7.0 33,820 11/11/2018
4.6.0 1,916 10/19/2018
4.5.1 18,790 5/22/2018
4.5.0 332 5/22/2018
4.4.1 611 5/6/2018
4.4.0 11,482 2/25/2018
4.3.0 364 2/24/2018
4.2.0 853 2/21/2018
4.1.0 602 2/19/2018
4.0.0 2,431 2/11/2018
4.0.0-beta07 306 2/10/2018
4.0.0-beta06 316 2/3/2018
4.0.0-beta05 312 1/22/2018
4.0.0-beta04 332 1/13/2018
4.0.0-beta03 316 1/9/2018
4.0.0-beta02 399 1/7/2018
4.0.0-beta01 292 1/7/2018
4.0.0-alpha04 284 1/5/2018
4.0.0-alpha03 287 12/26/2017
4.0.0-alpha02 308 11/30/2017
4.0.0-alpha01 266 11/26/2017
3.20.2 3,939 1/22/2018
3.20.1 536 1/13/2018
3.20.0 33,804 7/15/2017
3.20.0-beta01 337 5/31/2017
3.19.0 5,542 4/29/2017
3.18.0 4,407 4/9/2017
3.17.0 8,504 1/15/2017
3.16.0 923 1/3/2017
3.15.0 475 12/27/2016
3.14.0-beta03 356 11/20/2016
3.14.0-beta02 326 11/15/2016
3.14.0-beta01 364 10/30/2016
3.13.1 57,172 9/6/2016
3.13.0 735 8/18/2016
3.12.0 2,719 7/3/2016
3.11.1 2,517 4/24/2016
3.11.0 5,160 2/13/2016
3.10.0 3,578 12/30/2015
3.9.0 1,864 11/25/2015
3.8.0 21,772 9/26/2015
3.7.1 3,217 9/21/2015
3.7.0 7,942 5/9/2015
3.6.0 1,668 3/22/2015
3.5.0 2,324 1/10/2015
3.4.0 607 1/4/2015
3.3.0 1,643 11/26/2014
3.3.0-beta2 400 10/25/2014
3.3.0-beta1 453 9/28/2014
3.2.3 22,390 9/6/2014
3.2.2 475 9/5/2014
3.2.1 660 8/5/2014
3.2.0 443 8/5/2014
3.1.0 3,173 7/20/2014
3.0.2 855 6/26/2014
3.0.1 491 6/24/2014
3.0.0 967 6/21/2014
3.0.0-beta05 467 6/20/2014
3.0.0-beta04 438 6/15/2014
3.0.0-beta03 451 6/5/2014
3.0.0-beta02 445 5/29/2014
3.0.0-beta01 771 4/14/2014
3.0.0-alpha9 441 3/29/2014
3.0.0-alpha8 440 2/26/2014
3.0.0-alpha7 501 12/30/2013
3.0.0-alpha6 567 12/2/2013
3.0.0-alpha5 545 10/2/2013
3.0.0-alpha4 497 9/22/2013
3.0.0-alpha1 441 9/1/2013
2.6.0 8,248 7/26/2013
2.5.0 1,124 4/14/2013
2.4.0 813 2/3/2013
2.3.0 777 11/25/2012
2.2.1 811 8/29/2012
2.2.0 590 8/27/2012
2.1.2 2,556 10/9/2011
2.1.1 755 10/3/2011
2.1.0.19 728 10/3/2011
Show less