ExtremeAndy.CombinatoryFilters
4.1.0
dotnet add package ExtremeAndy.CombinatoryFilters --version 4.1.0
NuGet\Install-Package ExtremeAndy.CombinatoryFilters -Version 4.1.0
<PackageReference Include="ExtremeAndy.CombinatoryFilters" Version="4.1.0" />
<PackageVersion Include="ExtremeAndy.CombinatoryFilters" Version="4.1.0" />
<PackageReference Include="ExtremeAndy.CombinatoryFilters" />
paket add ExtremeAndy.CombinatoryFilters --version 4.1.0
#r "nuget: ExtremeAndy.CombinatoryFilters, 4.1.0"
#:package ExtremeAndy.CombinatoryFilters@4.1.0
#addin nuget:?package=ExtremeAndy.CombinatoryFilters&version=4.1.0
#tool nuget:?package=ExtremeAndy.CombinatoryFilters&version=4.1.0
CombinatoryFilters
Functional filter abstraction for creating, applying, mapping, and reducing combinatory filter structures
Installation
dotnet add package ExtremeAndy.CombinatoryFilters
Usage
- Define your filter interface(s) and/or class(es). Here's an example of a simple filter which checks whether an integer is between
UpperBoundandLowerBound.
public class NumericRangeFilter : Filter<int>
{
public NumericRangeFilter(int lowerBound, int upperBound)
{
LowerBound = lowerBound;
UpperBound = upperBound;
}
public int LowerBound { get; }
public int UpperBound { get; }
public override bool IsMatch(int item) => LowerBound <= item && item <= UpperBound;
}
Optionally implement
IEquatable<TFilter>on your filter class. If this is not done, then calling.Equals()on anIFilterNodein your filter tree will default to value/reference equality when comparing your leaf filters.<details> <summary>Example code</summary>
public class NumericRangeFilter : Filter<int>, IEquatable<NumericRangeFilter> { public NumericRangeFilter(int lowerBound, int upperBound) { LowerBound = lowerBound; UpperBound = upperBound; } public int LowerBound { get; } public int UpperBound { get; } public override bool IsMatch(int item) => LowerBound <= item && item <= UpperBound; public bool Equals(NumericRangeFilter other) { if (other is null) { return false; } return LowerBound == other.LowerBound && UpperBound == other.UpperBound; } public override bool Equals(object obj) => obj is NumericRangeFilter other && Equals(other); public override int GetHashCode() { unchecked { return (LowerBound.GetHashCode() * 397) ^ UpperBound.GetHashCode(); } } }</details>
Optionally implement
IComparable<TFilter>on your filter class. This will allow theSort()method to be used without passing an explicitIComparer<TFilter>.Create an instance of your filter and apply it to some values
var filter = new NumericRangeFilter(5, 10);
var filterNode = filter.ToLeafFilterNode();
var values = new[] { 1, 3, 5, 9, 11 };
var expectedFilteredValues = new[] { 5, 9 };
var filterPredicate = filterNode.GetPredicate<NumericRangeFilter, int>();
var filteredValues = values.Where(filterPredicate);
Assert.Equal(expectedFilteredValues, filteredValues);
Complex filters
You can assemble arbitrarily complex filters as follows:
var filter5To10 = new NumericRangeFilter(5, 10);
var filter8To15 = new NumericRangeFilter(8, 15);
var filter5To10Or8To15 = new CombinationFilterNode<NumericRangeFilter>(new[] { filter5To10, filter8To15 }, CombinationOperator.Any);
var filter9To12 = new NumericRangeFilter(9, 12);
var filter = new CombinationFilterNode<NumericRangeFilter>(new IFilterNode<NumericRangeFilter>[] { filter5To10Or8To15, filter9To12.ToLeafFilterNode() }, CombinationOperator.All);
Inversion
Any filter can be inverted using .Invert().
Testing a single value
You can test a single value as follows:
var filter5To10 = new NumericRangeFilter(5, 10);
var filter8To15 = new NumericRangeFilter(8, 15);
var combinationFilter = new CombinationFilterNode<NumericRangeFilter>(new[] { filter5To10, filter8To15 });
var isMatch = combinationFilter.IsMatch(7);
However, IsMatch causes an allocation and is not recommended for testing many items. Instead, use filter.GetPredicate:
var filter5To10 = new NumericRangeFilter(5, 10);
var filter8To15 = new NumericRangeFilter(8, 15);
var combinationFilter = new CombinationFilterNode<NumericRangeFilter>(new[] { filter5To10, filter8To15 });
var filterPredicate = combinationFilter.GetPredicate<NumericRangeFilter, int>();
var lotsOfIntegers = Enumerable.Range(0, 1000000);
var matches = lotsOfIntegers.Where(filterPredicate);
Preserving ordering of filters
CombinationFilterNode stores Nodes in the same order they are passed in. Operations such as Collapse should still preserve the order of Nodes, but this is not well tested.
Advanced usage
IFilterNode<> supports Map, Match and Aggregate for mapping and reducing filters.
Map usage
In this example, we reduce the range of the leaf node filters by increasing the lower bound by 1 and decreasing the upper bound by 1. The structure of all the All, Any and Invert operations remains unchanged.
var shortenedFilters = filter.Map(f =>
{
var newLowerBound = f.LowerBound + 1;
var newUpperBound = f.UpperBound - 1;
return new NumericRangeFilter(newLowerBound, newUpperBound);
});
Aggregate usage
In this example, we want to compute the length of the longest filter interval, or infinity if any filter is inverted.
var longestIntervalLength = filter.Aggregate<double>(
(lengths, _) => lengths.Max(),
length => double.PositiveInfinity,
f => f.Filter.UpperBound - f.Filter.LowerBound);
GetPartial usage
GetPartial provides a way to compute a partial filter, which is a kind of subset of a filter. When applied, a partial filter is guaranteed to return a superset of the result that the original filter would have returned when applied. This is a special case of the Relax operation, where leaf nodes are maximally relaxed (i.e. replaced with True) if the predicate is satisfied.
This is useful for performing pre-filtering on an incomplete dataset that doesn't (yet) contain all the information required to apply the final filter.
This is normally quite a trivial problem, but when there are InvertedFilters and CombinationFilters in the mix, computing the minimal partial filter is not intuitive or easy to demonstrate.
Here is a contrived example (note: this doesn't do anything useful, just demonstrates usage):
// All the numbers from -5 to 10, excluding numbers from 2 to 6
var filter = new CombinationFilterNode<NumericRangeFilter>(new IFilterNode<NumericRangeFilter>[]
{
new NumericRangeFilter(-5, 10).ToLeafFilterNode(),
new NumericRangeFilter(2, 6).ToLeafFilterNode().Invert()
}, CombinationOperator.All);
// Exclude filters with negative values
var partialFilter = filter.GetPartial(f => f.LowerBound >= 0);
// Initially we only have positive numbers
var positiveValues = new[] { 1, 3, 5, 7, 12 };
var prefilteredValues = positiveValues.Where(partialFilter.GetPredicate<NumericRangeFilter, int>()).ToList();
Assert.Equal(new[] { 1, 7, 12 }, prefilteredValues);
// Now we include some additional values
var additionalValues = new[] { -7, -4, 11 };
var combinedValues = prefilteredValues.Concat(additionalValues);
// Finally we apply our 'full' filter
var finalValues = combinedValues.Where(filter.GetPredicate<NumericRangeFilter, int>());
Assert.Equal(new[] { 1, 7, -4 }, finalValues);
Relax usage
Relax provides a way to relax a filter by relaxing its leaf nodes.
Example TBD.
| Product | Versions Compatible and additional computed target framework versions. |
|---|---|
| .NET | net5.0 was computed. net5.0-windows was computed. net6.0 was computed. net6.0-android was computed. net6.0-ios was computed. net6.0-maccatalyst was computed. net6.0-macos was computed. net6.0-tvos was computed. net6.0-windows was computed. net7.0 was computed. net7.0-android was computed. net7.0-ios was computed. net7.0-maccatalyst was computed. net7.0-macos was computed. net7.0-tvos was computed. net7.0-windows was computed. net8.0 was computed. net8.0-android was computed. net8.0-browser was computed. net8.0-ios was computed. net8.0-maccatalyst was computed. net8.0-macos was computed. net8.0-tvos was computed. net8.0-windows was computed. net9.0 was computed. net9.0-android was computed. net9.0-browser was computed. net9.0-ios was computed. net9.0-maccatalyst was computed. net9.0-macos was computed. net9.0-tvos was computed. net9.0-windows was computed. net10.0 was computed. net10.0-android was computed. net10.0-browser was computed. net10.0-ios was computed. net10.0-maccatalyst was computed. net10.0-macos was computed. net10.0-tvos was computed. net10.0-windows was computed. |
| .NET Core | netcoreapp2.0 was computed. netcoreapp2.1 was computed. netcoreapp2.2 was computed. netcoreapp3.0 was computed. netcoreapp3.1 was computed. |
| .NET Standard | netstandard2.0 is compatible. netstandard2.1 was computed. |
| .NET Framework | net461 was computed. net462 was computed. net463 was computed. net47 was computed. net471 was computed. net472 is compatible. net48 was computed. net481 was computed. |
| MonoAndroid | monoandroid was computed. |
| MonoMac | monomac was computed. |
| MonoTouch | monotouch was computed. |
| Tizen | tizen40 was computed. tizen60 was computed. |
| Xamarin.iOS | xamarinios was computed. |
| Xamarin.Mac | xamarinmac was computed. |
| Xamarin.TVOS | xamarintvos was computed. |
| Xamarin.WatchOS | xamarinwatchos was computed. |
-
.NETFramework 4.7.2
- No dependencies.
-
.NETStandard 2.0
- No dependencies.
NuGet packages
This package is not used by any NuGet packages.
GitHub repositories
This package is not used by any popular GitHub repositories.
| Version | Downloads | Last Updated |
|---|---|---|
| 4.1.0 | 432,094 | 9/7/2021 |
| 4.0.0 | 1,086 | 8/28/2021 |
| 3.0.3 | 1,007 | 7/28/2021 |
| 3.0.2 | 645 | 7/27/2021 |
| 3.0.1 | 595 | 7/25/2021 |
| 3.0.0 | 1,374 | 4/22/2021 |
| 2.0.4 | 597 | 2/24/2021 |
| 2.0.3 | 4,392 | 2/24/2021 |
| 2.0.2 | 586 | 2/24/2021 |
| 2.0.1 | 589 | 2/18/2021 |
| 2.0.0 | 3,403 | 6/18/2020 |
| 1.3.0 | 1,721 | 4/24/2020 |
| 1.2.0 | 3,008 | 12/10/2019 |
| 1.1.8 | 1,586 | 8/4/2019 |
| 1.1.7 | 801 | 8/4/2019 |
| 1.1.6 | 771 | 8/4/2019 |
| 1.1.5 | 804 | 8/2/2019 |
| 1.1.4 | 800 | 8/2/2019 |
| 1.1.3 | 776 | 8/2/2019 |
| 1.1.2 | 764 | 8/2/2019 |
| 1.1.1 | 785 | 8/2/2019 |
| 1.1.0 | 800 | 8/2/2019 |
| 1.0.4 | 818 | 7/22/2019 |
| 1.0.3 | 771 | 7/21/2019 |
| 1.0.2 | 770 | 7/21/2019 |
| 1.0.1 | 819 | 7/20/2019 |
| 1.0.0 | 712 | 7/20/2019 |