TYoshimura.DoubleDouble
2.9.4
There is a newer version of this package available.
See the version list below for details.
See the version list below for details.
dotnet add package TYoshimura.DoubleDouble --version 2.9.4
NuGet\Install-Package TYoshimura.DoubleDouble -Version 2.9.4
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="TYoshimura.DoubleDouble" Version="2.9.4" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add TYoshimura.DoubleDouble --version 2.9.4
The NuGet Team does not provide support for this client. Please contact its maintainers for support.
#r "nuget: TYoshimura.DoubleDouble, 2.9.4"
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install TYoshimura.DoubleDouble as a Cake Addin #addin nuget:?package=TYoshimura.DoubleDouble&version=2.9.4 // Install TYoshimura.DoubleDouble as a Cake Tool #tool nuget:?package=TYoshimura.DoubleDouble&version=2.9.4
The NuGet Team does not provide support for this client. Please contact its maintainers for support.
DoubleDouble
Double-Double Arithmetic and Special Function Implements
Requirement
.NET 7.0
Install
More Precision ?
Type
type | mantissa bits | significant digits |
---|---|---|
ddouble | 104 | 30 |
Epsilon: 2^-968 = 4.00833e-292
MaxValue : 2^1024 = 1.79769e308
Functions
function | domain | mantissa error bits | note | usage |
---|---|---|---|---|
sqrt | [0,+inf) | 2 | ddouble.Sqrt(x) | |
cbrt | (-inf,+inf) | 2 | ddouble.Cbrt(x) | |
root_n | (-inf,+inf) | 3 | ddouble.RootN(x, n) | |
log2 | (0,+inf) | 2 | ddouble.Log2(x) | |
log | (0,+inf) | 3 | ddouble.Log(x), ddouble.Log(x, b) | |
log10 | (0,+inf) | 3 | ddouble.Log10(x) | |
log1p | (-1,+inf) | 3 | log(1+x) | ddouble.Log1p(x) |
pow2 | (-inf,+inf) | 1 | ddouble.Pow2(x) | |
pow2m1 | (-inf,+inf) | 2 | pow2(x)-1 | ddouble.Pow2m1(x) |
pow | (-inf,+inf) | 2 | ddouble.Pow(x, y) | |
pow10 | (-inf,+inf) | 2 | ddouble.Pow10(x) | |
exp | (-inf,+inf) | 2 | ddouble.Exp(x) | |
expm1 | (-inf,+inf) | 2 | exp(x)-1 | ddouble.Expm1(x) |
sin | (-inf,+inf) | 2 | ddouble.Sin(x) | |
cos | (-inf,+inf) | 2 | ddouble.Cos(x) | |
tan | (-inf,+inf) | 3 | ddouble.Tan(x) | |
sinpi | (-inf,+inf) | 1 | sin(πx) | ddouble.SinPI(x) |
cospi | (-inf,+inf) | 1 | cos(πx) | ddouble.CosPI(x) |
tanpi | (-inf,+inf) | 2 | tan(πx) | ddouble.TanPI(x) |
sinh | (-inf,+inf) | 2 | ddouble.Sinh(x) | |
cosh | (-inf,+inf) | 2 | ddouble.Cosh(x) | |
tanh | (-inf,+inf) | 2 | ddouble.Tanh(x) | |
asin | [-1,1] | 2 | Accuracy deteriorates near x=-1,1. | ddouble.Asin(x) |
acos | [-1,1] | 2 | Accuracy deteriorates near x=-1,1. | ddouble.Acos(x) |
atan | (-inf,+inf) | 2 | ddouble.Atan(x) | |
atan2 | (-inf,+inf) | 2 | ddouble.Atan2(y, x) | |
arsinh | (-inf,+inf) | 2 | ddouble.Arsinh(x) | |
arcosh | [1,+inf) | 2 | ddouble.Arcosh(x) | |
artanh | (-1,1) | 4 | Accuracy deteriorates near x=-1,1. | ddouble.Artanh(x) |
sinc | (-inf,+inf) | 2 | ddouble.Sinc(x, normalized) | |
sinhc | (-inf,+inf) | 3 | ddouble.Sinhc(x) | |
gamma | (-inf,+inf) | 2 | Accuracy deteriorates near non-positive intergers. If x is Natual number lass than 35, an exact integer value is returned. | ddouble.Gamma(x) |
loggamma | (0,+inf) | 4 | ddouble.LogGamma(x) | |
digamma | (-inf,+inf) | 4 | Near the positive root, polynomial interpolation is used. | ddouble.Digamma(x) |
polygamma | (-inf,+inf) | 4 | Accuracy deteriorates near non-positive intergers. n ≤ 16 | ddouble.Polygamma(n, x) |
inverse_gamma | [1,+inf) | 4 | gamma^-1(x) | ddouble.InverseGamma(x) |
lower_incomplete_gamma | [0,+inf) | 4 | nu ≤ 128 | ddouble.LowerIncompleteGamma(nu, x) |
upper_incomplete_gamma | [0,+inf) | 4 | nu ≤ 128 | ddouble.UpperIncompleteGamma(nu, x) |
beta | [0,+inf) | 4 | ddouble.Beta(a, b) | |
incomplete_beta | [0,1] | 4 | Accuracy decreases when the radio of a,b is too large. a,b ≤ 64 | ddouble.IncompleteBeta(x, a, b) |
erf | (-inf,+inf) | 3 | ddouble.Erf(x) | |
erfc | (-inf,+inf) | 3 | ddouble.Erfc(x) | |
inverse_erf | (-1,1) | 3 | ddouble.InverseErf(x) | |
inverse_erfc | (0,2) | 3 | ddouble.InverseErfc(x) | |
erfi | (-inf,+inf) | 4 | ddouble.Erfi(x) | |
dawson_f | (-inf,+inf) | 4 | ddouble.DawsonF(x) | |
bessel_j | [0,+inf) | 8 | Accuracy deteriorates near root. abs(nu) ≤ 16 | ddouble.BesselJ(nu, x) |
bessel_y | [0,+inf) | 8 | Accuracy deteriorates near the root and at non-interger nu very close (< 2^-25) to the integer. abs(nu) ≤ 16 | ddouble.BesselY(nu, x) |
bessel_i | [0,+inf) | 6 | Accuracy deteriorates near root. abs(nu) ≤ 16 | ddouble.BesselI(nu, x) |
bessel_k | [0,+inf) | 6 | Accuracy deteriorates with non-interger nu very close (< 2^-25) to an integer. abs(nu) ≤ 16 | ddouble.BesselK(nu, x) |
struve_h | (-inf,+inf) | 4 | 0 ≤ n ≤ 8 | ddouble.StruveH(n, x) |
struve_k | [0,+inf) | 4 | 0 ≤ n ≤ 8 | ddouble.StruveK(n, x) |
struve_l | (-inf,+inf) | 4 | 0 ≤ n ≤ 8 | ddouble.StruveL(n, x) |
struve_m | [0,+inf) | 4 | 0 ≤ n ≤ 8 | ddouble.StruveM(n, x) |
elliptic_k | [0,1] | 4 | k: elliptic modulus, m=k^2 | ddouble.EllipticK(m) |
elliptic_e | [0,1] | 4 | k: elliptic modulus, m=k^2 | ddouble.EllipticE(m) |
elliptic_pi | [0,1] | 4 | k: elliptic modulus, m=k^2 | ddouble.EllipticPi(n, m) |
incomplete_elliptic_k | [0,2pi] | 4 | k: elliptic modulus, m=k^2 | ddouble.EllipticK(x, m) |
incomplete_elliptic_e | [0,2pi] | 4 | k: elliptic modulus, m=k^2 | ddouble.EllipticE(x, m) |
incomplete_elliptic_pi | [0,2pi] | 4 | k: elliptic modulus, m=k^2 Argument order follows wolfram. | ddouble.EllipticPi(n, x, m) |
elliptic_theta | (-inf,+inf) | 4 | a=1...4, q ≤ 0.995 | ddouble.EllipticTheta(a, x, q) |
kepler_e | (-inf,+inf) | 6 | inverse kepler's equation, e(eccentricity) ≤ 256 | ddouble.KeplerE(m, e, centered) |
agm | [0,+inf) | 2 | ddouble.Agm(a, b) | |
fresnel_c | (-inf,+inf) | 4 | ddouble.FresnelC(x) | |
fresnel_s | (-inf,+inf) | 4 | ddouble.FresnelS(x) | |
ei | (-inf,+inf) | 4 | exponential integral | ddouble.Ei(x) |
ein | (-inf,+inf) | 4 | complementary exponential integral | ddouble.Ein(x) |
li | [0,+inf) | 5 | logarithmic integral li(x)=ei(log(x)) | ddouble.Li(x) |
si | (-inf,+inf) | 4 | sin integral, limit_zero=true: si(x) | ddouble.Si(x, limit_zero) |
ci | [0,+inf) | 4 | cos integral | ddouble.Ci(x) |
shi | (-inf,+inf) | 5 | hyperbolic sin integral | ddouble.Shi(x) |
chi | [0,+inf) | 5 | hyperbolic cos integral | ddouble.Chi(x) |
lambert_w | [-1/e,+inf) | 4 | ddouble.LambertW(x) | |
airy_ai | (-inf,+inf) | 5 | Accuracy deteriorates near root. | ddouble.AiryAi(x) |
airy_bi | (-inf,+inf) | 5 | Accuracy deteriorates near root. | ddouble.AiryBi(x) |
jacobi_sn | (-inf,+inf) | 4 | k: elliptic modulus, m=k^2 | ddouble.JacobiSn(x, m) |
jacobi_cn | (-inf,+inf) | 4 | k: elliptic modulus, m=k^2 | ddouble.JacobiCn(x, m) |
jacobi_dn | (-inf,+inf) | 4 | k: elliptic modulus, m=k^2 | ddouble.JacobiDn(x, m) |
jacobi_amplitude | (-inf,+inf) | 4 | k: elliptic modulus, m=k^2 | ddouble.JacobiAm(x, m) |
inverse_jacobi_sn | [-1,+1] | 4 | k: elliptic modulus, m=k^2 | ddouble.JacobiArcSn(x, m) |
inverse_jacobi_cn | [-1,+1] | 4 | k: elliptic modulus, m=k^2 | ddouble.JacobiArcCn(x, m) |
inverse_jacobi_dn | [0,1] | 4 | k: elliptic modulus, m=k^2 | ddouble.JacobiArcDn(x, m) |
carlson_rd | [0,+inf) | 4 | ddouble.CarlsonRD(x, y, z) | |
carlson_rc | [0,+inf) | 4 | ddouble.CarlsonRC(x, y) | |
carlson_rf | [0,+inf) | 4 | ddouble.CarlsonRF(x, y, z) | |
carlson_rj | [0,+inf) | 4 | ddouble.CarlsonRJ(x, y, z, w) | |
carlson_rg | [0,+inf) | 4 | ddouble.CarlsonRG(x, y, z) | |
riemann_zeta | (-inf,+inf) | 3 | ddouble.RiemannZeta(x) | |
hurwitz_zeta | (1,+inf) | 3 | a ≥ 0 | ddouble.HurwitzZeta(x, a) |
dirichlet_eta | (-inf,+inf) | 3 | ddouble.DirichletEta(x) | |
polylog | (-inf,1] | 3 | n ∈ [-4,8] | ddouble.Polylog(n, x) |
owen's_t | (-inf,+inf) | 5 | ddouble.OwenT(h, a) | |
bump | (-inf,+inf) | 4 | C-infinity smoothness basis function, bump(x)=1/(exp(1/x-1/(1-x))+1) | ddouble.Bump(x) |
hermite_h | (-inf,+inf) | 3 | n ≤ 64 | ddouble.HermiteH(n, x) |
laguerre_l | (-inf,+inf) | 3 | n ≤ 64 | ddouble.LaguerreL(n, x) |
associated_laguerre_l | (-inf,+inf) | 3 | n ≤ 64 | ddouble.LaguerreL(n, alpha, x) |
legendre_p | (-inf,+inf) | 3 | n ≤ 64 | ddouble.LegendreP(n, x) |
associated_legendre_p | [-1,1] | 3 | n ≤ 64 | ddouble.LegendreP(n, m, x) |
chebyshev_t | (-inf,+inf) | 3 | n ≤ 64 | ddouble.ChebyshevT(n, x) |
chebyshev_u | (-inf,+inf) | 3 | n ≤ 64 | ddouble.ChebyshevU(n, x) |
zernike_r | [0,1] | 3 | n ≤ 64 | ddouble.ZernikeR(n, m, x) |
gegenbauer_c | (-inf,+inf) | 3 | n ≤ 64 | ddouble.GegenbauerC(n, alpha, x) |
jacobi_p | [-1,1] | 3 | n ≤ 64, alpha,beta > -1 | ddouble.JacobiP(n, alpha, beta, x) |
bernoulli | [0,1] | 4 | n ≤ 64, centered: x->x-1/2 | ddouble.Bernoulli(n, x, centered) |
mathieu_eigenvalue_a | (-inf,+inf) | 4 | n ≤ 16 | ddouble.MathieuA(n, q) |
mathieu_eigenvalue_b | (-inf,+inf) | 4 | n ≤ 16 | ddouble.MathieuB(n, q) |
mathieu_ce | (-inf,+inf) | 4 | n ≤ 16, Accuracy deteriorates when q is very large. | ddouble.MathieuC(n, q, x) |
mathieu_se | (-inf,+inf) | 4 | n ≤ 16, Accuracy deteriorates when q is very large. | ddouble.MathieuS(n, q, x) |
ldexp | (-inf,+inf) | N/A | ddouble.Ldexp(x, y) | |
binomial | N/A | 1 | n ≤ 1000 | ddouble.Binomial(n, k) |
hypot | N/A | 2 | ddouble.Hypot(x, y) | |
min | N/A | N/A | ddouble.Min(x, y) | |
max | N/A | N/A | ddouble.Max(x, y) | |
clamp | N/A | N/A | ddouble.Clamp(v, min, max) | |
copysign | N/A | N/A | ddouble.CopySign(value, sign) | |
floor | N/A | N/A | ddouble.Floor(x) | |
ceiling | N/A | N/A | ddouble.Ceiling(x) | |
round | N/A | N/A | ddouble.Round(x) | |
truncate | N/A | N/A | ddouble.Truncate(x) | |
array sum | N/A | N/A | IEnumerable<ddouble>.Sum() | |
array average | N/A | N/A | IEnumerable<ddouble>.Average() | |
array min | N/A | N/A | IEnumerable<ddouble>.Min() | |
array max | N/A | N/A | IEnumerable<ddouble>.Max() |
Constants
constant | value | note | usage |
---|---|---|---|
Pi | 3.141592653589793238462... | ddouble.PI | |
Napier's E | 2.718281828459045235360... | ddouble.E | |
Euler's Gamma | 0.577215664901532860606... | ddouble.EulerGamma | |
ζ(3) | 1.202056903159594285399... | Apery const. | ddouble.Zeta3 |
ζ(5) | 1.036927755143369926331... | ddouble.Zeta5 | |
ζ(7) | 1.008349277381922826839... | ddouble.Zeta7 | |
ζ(9) | 1.002008392826082214418... | ddouble.Zeta9 | |
Positive root of digamma | 1.461632144968362341263... | ddouble.DigammaZero | |
Erdös Borwein constant | 1.606695152415291763783... | ddouble.ErdosBorwein | |
Feigenbaum constant | 4.669201609102990671853... | ddouble.FeigenbaumDelta | |
Lemniscate constant | 2.622057554292119810465... | ddouble.LemniscatePI |
Sequence
sequence | note | usage |
---|---|---|
Taylor | 1/n! | ddouble.TaylorSequence |
Factorial | n! | ddouble.Factorial |
Bernoulli | B(2k) | ddouble.BernoulliSequence |
HarmonicNumber | H_n | ddouble.HarmonicNumber |
StieltjesGamma | γ_n | ddouble.StieltjesGamma |
Casts
- long (accurately)
ddouble v0 = 123;
long n0 = (long)v0;
- double (accurately)
ddouble v1 = 0.5;
double n1 = (double)v1;
- decimal (approximately)
ddouble v1 = 0.1m;
decimal n1 = (decimal)v1;
- string (approximately)
ddouble v2 = "3.14e0";
string s0 = v2.ToString();
string s1 = v2.ToString("E8");
string s2 = $"{v2:E8}";
I/O
BinaryWriter, BinaryReader
Licence
Author
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET | net7.0 is compatible. net7.0-android was computed. net7.0-ios was computed. net7.0-maccatalyst was computed. net7.0-macos was computed. net7.0-tvos was computed. net7.0-windows was computed. net8.0 was computed. net8.0-android was computed. net8.0-browser was computed. net8.0-ios was computed. net8.0-maccatalyst was computed. net8.0-macos was computed. net8.0-tvos was computed. net8.0-windows was computed. net9.0 was computed. net9.0-android was computed. net9.0-browser was computed. net9.0-ios was computed. net9.0-maccatalyst was computed. net9.0-macos was computed. net9.0-tvos was computed. net9.0-windows was computed. |
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.
-
net7.0
- No dependencies.
NuGet packages (12)
Showing the top 5 NuGet packages that depend on TYoshimura.DoubleDouble:
Package | Downloads |
---|---|
TYoshimura.Algebra
Linear Algebra |
|
TYoshimura.DoubleDouble.Complex
Double-Double Complex and Quaternion Implements |
|
TYoshimura.CurveFitting
Curvefitting - linear, polynomial, pade, arbitrary function |
|
TYoshimura.DoubleDouble.Statistic
Double-Double Statistic Implements |
|
TYoshimura.DoubleDouble.Integrate
Double-Double Numerical Integration Implements |
GitHub repositories
This package is not used by any popular GitHub repositories.
Version | Downloads | Last updated |
---|---|---|
4.2.6 | 155 | 11/22/2024 |
4.2.5 | 108 | 11/22/2024 |
4.2.4 | 97 | 11/21/2024 |
4.2.3 | 120 | 11/18/2024 |
4.2.2 | 141 | 11/17/2024 |
4.2.1 | 114 | 11/14/2024 |
4.2.0 | 110 | 11/13/2024 |
4.1.0 | 138 | 11/13/2024 |
4.0.3 | 99 | 11/8/2024 |
4.0.2 | 111 | 11/7/2024 |
4.0.1 | 149 | 11/1/2024 |
4.0.0 | 173 | 10/31/2024 |
3.3.4 | 106 | 10/23/2024 |
3.3.3 | 82 | 10/21/2024 |
3.3.2 | 175 | 10/14/2024 |
3.3.1 | 94 | 10/13/2024 |
3.3.0 | 108 | 10/13/2024 |
3.2.9 | 106 | 10/11/2024 |
3.2.8 | 115 | 9/18/2024 |
3.2.7 | 134 | 9/10/2024 |
3.2.6 | 299 | 8/22/2024 |
3.2.5 | 142 | 8/22/2024 |
3.2.4 | 165 | 7/12/2024 |
3.2.3 | 118 | 6/9/2024 |
3.2.2 | 380 | 4/26/2024 |
3.2.1 | 382 | 2/22/2024 |
3.2.0 | 750 | 1/20/2024 |
3.1.6 | 497 | 11/12/2023 |
3.1.5 | 446 | 11/3/2023 |
3.1.4 | 481 | 11/3/2023 |
3.1.3 | 460 | 10/30/2023 |
3.1.2 | 471 | 10/28/2023 |
3.1.1 | 430 | 10/28/2023 |
3.1.0 | 505 | 10/21/2023 |
3.0.9 | 447 | 10/20/2023 |
3.0.8 | 486 | 10/19/2023 |
3.0.7 | 487 | 10/14/2023 |
3.0.6 | 495 | 10/13/2023 |
3.0.5 | 486 | 10/12/2023 |
3.0.4 | 472 | 10/11/2023 |
3.0.3 | 533 | 10/8/2023 |
3.0.2 | 513 | 10/7/2023 |
3.0.1 | 454 | 9/30/2023 |
3.0.0 | 505 | 9/30/2023 |
2.9.8 | 504 | 9/29/2023 |
2.9.7 | 511 | 9/16/2023 |
2.9.6 | 575 | 9/9/2023 |
2.9.5 | 571 | 9/9/2023 |
2.9.4 | 583 | 9/8/2023 |
2.9.3 | 548 | 9/8/2023 |
2.9.2 | 481 | 9/6/2023 |
2.9.1 | 512 | 9/5/2023 |
2.9.0 | 759 | 9/4/2023 |
2.8.6 | 835 | 3/18/2023 |
2.8.5 | 1,212 | 3/13/2023 |
2.8.4 | 726 | 3/11/2023 |
2.8.3 | 677 | 2/23/2023 |
2.8.2 | 677 | 2/17/2023 |
2.8.1 | 761 | 2/16/2023 |
2.8.0 | 674 | 2/13/2023 |
2.7.2 | 1,774 | 10/30/2022 |
2.7.1 | 800 | 10/28/2022 |
2.7.0 | 826 | 10/25/2022 |
2.6.1 | 821 | 10/14/2022 |
2.6.0 | 862 | 10/13/2022 |
2.5.6 | 863 | 9/18/2022 |
2.5.5 | 869 | 9/17/2022 |
2.5.4 | 814 | 9/16/2022 |
2.5.3 | 830 | 9/15/2022 |
2.5.2 | 812 | 9/7/2022 |
2.5.1 | 869 | 9/5/2022 |
2.5.0 | 2,110 | 9/4/2022 |
2.4.5 | 765 | 9/3/2022 |
2.4.4 | 800 | 9/2/2022 |
2.4.3 | 817 | 8/31/2022 |
2.4.2 | 892 | 2/8/2022 |
2.4.1 | 1,359 | 1/26/2022 |
2.4.0 | 841 | 1/25/2022 |
2.3.1 | 987 | 1/21/2022 |
2.3.0 | 951 | 1/20/2022 |
2.2.0 | 851 | 1/13/2022 |
2.1.2 | 888 | 1/12/2022 |
2.1.1 | 870 | 1/12/2022 |
2.1.0 | 653 | 1/11/2022 |
2.0.5 | 793 | 1/9/2022 |
2.0.4 | 727 | 1/8/2022 |
2.0.2 | 683 | 1/8/2022 |
2.0.1 | 706 | 1/7/2022 |
2.0.0 | 711 | 1/7/2022 |
1.9.4 | 701 | 1/6/2022 |
1.9.3 | 681 | 1/6/2022 |
1.9.2 | 744 | 1/5/2022 |
1.9.0 | 682 | 1/5/2022 |
1.8.0 | 674 | 1/4/2022 |
1.7.0 | 681 | 1/3/2022 |
1.6.1 | 691 | 12/25/2021 |
1.6.0 | 1,222 | 12/25/2021 |
1.5.2 | 649 | 12/22/2021 |
1.5.1 | 723 | 12/22/2021 |
1.5.0 | 712 | 12/22/2021 |
1.4.3 | 852 | 12/11/2021 |
1.4.2 | 819 | 12/11/2021 |
1.4.1 | 707 | 12/2/2021 |
1.4.0 | 1,195 | 12/1/2021 |
perf basic func