OSDC.DotnetLibraries.General.Surveying 1.0.4

There is a newer version of this package available.
See the version list below for details.
dotnet add package OSDC.DotnetLibraries.General.Surveying --version 1.0.4                
NuGet\Install-Package OSDC.DotnetLibraries.General.Surveying -Version 1.0.4                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="OSDC.DotnetLibraries.General.Surveying" Version="1.0.4" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add OSDC.DotnetLibraries.General.Surveying --version 1.0.4                
#r "nuget: OSDC.DotnetLibraries.General.Surveying, 1.0.4"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install OSDC.DotnetLibraries.General.Surveying as a Cake Addin
#addin nuget:?package=OSDC.DotnetLibraries.General.Surveying&version=1.0.4

// Install OSDC.DotnetLibraries.General.Surveying as a Cake Tool
#tool nuget:?package=OSDC.DotnetLibraries.General.Surveying&version=1.0.4                

Preamble

This package is developed as part of the Society of Petroleum (SPE) Open Source Drilling Community, a sub-committee of the Drilling System Automation Technical Section. This package contains classes to perform survey calculations

Conversion from Latitude-Longitude to X-Y

The earth is modelled as an oblate, i.e., a spheroid flatened at the pole. At a given latitude, a path on the Earth is a circle. Let us consider that the origin of longitudes is Greenwich and that the Earth is modelled by a semi-long axis, $a$, and a flatening, $f$. The flatening is defined as: $f = \frac{{a - b}}{{a}}$ where $b$ is the semi-short axis. Therefore the semi short axis can be expressed as: $b = a - f \cdot a$

The radius of the Earth at a given latitude, $\phi$ is given by: $R(\phi) = \frac{{a \cdot \sqrt{{\cos^2(\phi) + \frac{{b^2}}{{a^2}} \cdot \sin^2(\phi)}}}}{{\sqrt{1 - f \cdot (2 - f) \cdot \sin^2(\phi)}}}$

<svg width="700" height="300" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" overflow="hidden"> <g> <rect x="0" y="0" width="700" height="300" fill="#FFFFFF"/> <path d="M136.5 141C136.5 76.6589 226.491 24.5001 337.5 24.5001 448.509 24.5001 538.5 76.6589 538.5 141 538.5 205.341 448.509 257.5 337.5 257.5 226.491 257.5 136.5 205.341 136.5 141Z" stroke="#000000" stroke-width="1.33333" stroke-miterlimit="8" fill="none" fill-rule="evenodd"/> <path d="M282.5 141C282.5 76.6589 306.005 24.5001 335 24.5001 363.995 24.5001 387.5 76.6589 387.5 141 387.5 205.341 363.995 257.5 335 257.5 306.005 257.5 282.5 205.341 282.5 141Z" stroke="#000000" stroke-width="1.33333" stroke-miterlimit="8" fill="none" fill-rule="evenodd"/> <path d="M136.5 141C136.5 119.185 226.491 101.5 337.5 101.5 448.509 101.5 538.5 119.185 538.5 141 538.5 162.815 448.509 180.5 337.5 180.5 226.491 180.5 136.5 162.815 136.5 141Z" stroke="#000000" stroke-width="1.33333" stroke-miterlimit="8" fill="none" fill-rule="evenodd"/> <text font-family="Calibri,Calibri_MSFontService,sans-serif" font-weight="400" font-size="24" transform="translate(9.6 94)">Equator</text> <path d="M48.6383 106.197 140.944 148.27 140.668 148.876 48.3618 106.803ZM141.252 144.38 146.872 151.338 137.934 151.66Z"/> <text font-family="Calibri,Calibri_MSFontService,sans-serif" font-weight="400" font-size="24" transform="translate(128.54 275)">Greenwich</text> <path d="M0.214529-0.255125 48.2213 40.1127 47.7923 40.6229-0.214529 0.255125ZM49.5606 36.4482 53.1093 44.6584 44.412 42.5712Z" transform="matrix(1 0 0 -1 245.5 268.158)"/> <path d="M255.5 141C255.5 76.6589 291.317 24.5001 335.5 24.5001 379.683 24.5001 415.5 76.6589 415.5 141 415.5 205.341 379.683 257.5 335.5 257.5 291.317 257.5 255.5 205.341 255.5 141Z" stroke="#000000" stroke-width="1.33333" stroke-miterlimit="8" stroke-dasharray="5.33333 4" fill="none" fill-rule="evenodd"/> <path d="M173.5 78.5001C173.5 60.8269 247.597 46.5001 339 46.5001 430.403 46.5001 504.5 60.8269 504.5 78.5001 504.5 96.1732 430.403 110.5 339 110.5 247.597 110.5 173.5 96.1732 173.5 78.5001Z" stroke="#000000" stroke-width="1.33333" stroke-miterlimit="8" stroke-dasharray="5.33333 4" fill="none" fill-rule="evenodd"/> <text font-family="Calibri,Calibri_MSFontService,sans-serif" font-weight="400" font-size="24" transform="translate(347.344 198)">0,0</text> <path d="M411.682 107.294C416.256 129.694 416.098 153.579 411.229 175.847" stroke="#0070C0" stroke-width="4" stroke-miterlimit="8" fill="none" fill-rule="evenodd"/> <path d="M414.179 106.458C405.4 107.331 396.234 108.05 386.791 108.607" stroke="#0070C0" stroke-width="4" stroke-miterlimit="8" fill="none" fill-rule="evenodd"/> <text font-family="Calibri,Calibri_MSFontService,sans-serif" font-weight="400" font-size="24" transform="translate(431.699 148)">x</text> <text font-family="Calibri,Calibri_MSFontService,sans-serif" font-weight="400" font-size="24" transform="translate(392.211 95)">y</text> <path d="M335 3 335 279.232" stroke="#000000" stroke-width="2" stroke-miterlimit="8" stroke-dasharray="8 6 2 6" fill="none" fill-rule="evenodd"/> <path d="M0.278086-0.183792 18.4004 27.2361 17.8442 27.6037-0.278086 0.183792ZM20.7241 24.1021 21.7981 32.9816 14.0501 28.5131Z" transform="matrix(-1 0 0 1 335.298 78.5001)"/> <text font-family="Calibri,Calibri_MSFontService,sans-serif" font-weight="400" font-size="24" transform="translate(309.658 88)">R</text> <path d="M557.807 140.46 116 140" stroke="#000000" stroke-width="2" stroke-miterlimit="8" stroke-dasharray="8 6 2 6" fill="none" fill-rule="evenodd"/> <path d="M334.968 142.514 293.465 116.948 295.563 113.542 337.066 139.108ZM293.07 121.402 286 110 299.364 111.185Z" fill="#0070C0"/> <path d="M0 0 47.6964 39.883" stroke="#000000" stroke-width="0.666667" stroke-miterlimit="8" fill="none" fill-rule="evenodd" transform="matrix(-1 0 0 1 333.196 140.5)"/> <path d="M301.663 165.273C300.875 150.727 300.789 135.71 301.408 121.033" stroke="#000000" stroke-width="2" stroke-miterlimit="8" fill="none" fill-rule="evenodd"/> <text font-family="Calibri,Calibri_MSFontService,sans-serif" font-weight="400" font-size="24" transform="translate(285.473 136)">φ</text> <path d="M385.683 164.3C357.757 165.115 328.66 165.22 300.359 164.606" stroke="#000000" stroke-width="2" stroke-miterlimit="8" fill="none" fill-rule="evenodd"/> <path d="M335.865 138.197 402.763 170.309 401.032 173.915 334.135 141.803ZM402.691 165.837 410.913 176.439 397.498 176.655Z" fill="#0070C0"/> <text font-family="Calibri,Calibri_MSFontService,sans-serif" font-weight="400" font-size="24" transform="translate(341.513 160)">λ</text> <path d="M382.5 178.5C382.5 177.395 383.395 176.5 384.5 176.5 385.605 176.5 386.5 177.395 386.5 178.5 386.5 179.605 385.605 180.5 384.5 180.5 383.395 180.5 382.5 179.605 382.5 178.5Z" stroke="#000000" stroke-width="1.33333" stroke-miterlimit="8" fill-rule="evenodd"/> </g> </svg>

At that latitude the $y$-coordinate (east-west) is the length of the circular arc counted from the Greenwich meridian, i.e., the longitude angle, $\lambda$: $y = R(\phi) \cdot \lambda$ The $x$-coordinate (south-north) is the length of the elliptical arc counted from the equator using the latitude. This involves the elliptic integral of the second kind, denoted $E(\phi, m)$ where $m=1- \frac{{b^2}}{{a^2}}$. Its definition is: $E(\phi, m) = \int_0^\phi \sqrt{1 - m \cdot \sin^2(t)} , dt$. The definition of $x$ is then: $x = a \cdot E(\phi, m)$.

Conversely, to retrieve the latitude and longitude from the $x$ and $y$ coordinates, i.e., arc lengths, the following method is used: $\phi = E^{-1}(\frac{x}{a}, m)$ and $\lambda = \frac{y}{R(\phi)}$.

The elliptic integral of the second kind is calculated using the special function defined in OSDC.DotnetLibraries.General.Math, namely SpecialFunctions.EllipticE(phi, m) and its inverse is Elliptic.InverseEllipticE(x, m).

So in conclusion, the $x$ and $y$ coordinates of CurvilinearPoint3D are not coordinates on a line but arcs. $x$ is a circular arc and $y$ is an elliptical arc. The origin of $x$ and $y$ is the point at the equator at the Greenwich meridian. Their calculations is based on the WGS84 definition of the Earth.

Product Compatible and additional computed target framework versions.
.NET net6.0 is compatible.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
1.0.5 169 2/7/2024
1.0.4 114 2/7/2024
1.0.3 205 6/29/2023
1.0.2 152 6/28/2023
1.0.1 150 6/28/2023
1.0.0 176 4/25/2023