MathNet.Numerics.FSharp.Signed 3.14.0-beta01

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

This is a prerelease version of MathNet.Numerics.FSharp.Signed.
There is a newer version of this package available.
See the version list below for details.
Install-Package MathNet.Numerics.FSharp.Signed -Version 3.14.0-beta01
dotnet add package MathNet.Numerics.FSharp.Signed --version 3.14.0-beta01
<PackageReference Include="MathNet.Numerics.FSharp.Signed" Version="3.14.0-beta01" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add MathNet.Numerics.FSharp.Signed --version 3.14.0-beta01
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Release Notes

FFT: MKL native provider backend.
FFT: 2D and multi-dimensional FFT (only supported by MKL provider, managed provider pending).
FFT: real conjugate-even FFT (only leveraging symmetry in MKL provider).
FFT: managed provider significantly faster on x64.
Provider Control: separate Control classes for LA and FFT Providers.
Provider Control: avoid internal exceptions on provider discovery.
Linear Algebra: dot-power on vectors and matrices, supporting native providers.
Linear Algebra: matrix Moore-Penrose pseudo-inverse (SVD backed).
Root Finding: extend zero-crossing bracketing in derivative-free algorithms.
Window: periodic versions of Hamming, Hann, Cosine and Lanczos windows.
Special Functions: more robust GammaLowerRegularizedInv (and Gamma.InvCDF).
BUG: ODE Solver: fix bug in Runge-Kutta second order routine ~Ksero

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version History

Version Downloads Last updated
4.12.0 117 8/2/2020
4.11.0 131 5/24/2020
4.10.0 107 5/24/2020
4.9.1 134 4/12/2020
4.9.0 146 10/13/2019
4.8.1 172 6/11/2019
4.8.0 178 6/2/2019
4.8.0-beta02 160 5/30/2019
4.8.0-beta01 161 4/28/2019
4.7.0 291 11/11/2018
4.6.0 243 10/19/2018
4.5.0 394 5/22/2018
4.4.1 369 5/6/2018
3.20.2 430 1/22/2018
3.20.1 380 1/13/2018
3.20.0 519 7/15/2017
3.20.0-beta01 345 5/31/2017
3.19.0 416 4/29/2017
3.18.0 393 4/9/2017
3.17.0 449 1/15/2017
3.16.0 402 1/3/2017
3.15.0 414 12/27/2016
3.14.0-beta03 397 11/20/2016
3.14.0-beta02 362 11/15/2016
3.14.0-beta01 379 10/30/2016
3.13.1 455 9/6/2016
3.13.0 401 8/18/2016
3.12.0 456 7/3/2016
3.11.1 549 4/24/2016
3.11.0 588 2/13/2016
3.10.0 547 12/30/2015
3.9.0 513 11/25/2015
3.8.0 513 9/26/2015
3.7.1 516 9/21/2015
3.7.0 682 5/9/2015
3.6.0 716 3/22/2015
3.5.0 636 1/10/2015
3.4.0 478 1/4/2015
3.3.0 510 11/26/2014
3.3.0-beta2 539 10/25/2014
3.3.0-beta1 478 9/28/2014
3.2.3 677 9/6/2014
3.2.2 504 9/5/2014
3.2.1 543 8/5/2014
3.2.0 532 8/5/2014
3.1.0 533 7/20/2014
3.0.2 509 6/26/2014
3.0.1 489 6/24/2014
3.0.0 487 6/21/2014
3.0.0-beta05 441 6/20/2014
3.0.0-beta04 464 6/15/2014
3.0.0-beta03 470 6/5/2014
3.0.0-beta02 484 5/29/2014
3.0.0-beta01 516 4/14/2014
3.0.0-alpha9 474 3/29/2014
3.0.0-alpha8 450 2/26/2014
3.0.0-alpha7 443 12/30/2013
3.0.0-alpha6 455 12/2/2013
3.0.0-alpha5 531 10/2/2013
Show less