LumenWorksCsvReader2 4.4.0

dotnet add package LumenWorksCsvReader2 --version 4.4.0                
NuGet\Install-Package LumenWorksCsvReader2 -Version 4.4.0                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="LumenWorksCsvReader2" Version="4.4.0" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add LumenWorksCsvReader2 --version 4.4.0                
#r "nuget: LumenWorksCsvReader2, 4.4.0"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install LumenWorksCsvReader2 as a Cake Addin
#addin nuget:?package=LumenWorksCsvReader2&version=4.4.0

// Install LumenWorksCsvReader2 as a Cake Tool
#tool nuget:?package=LumenWorksCsvReader2&version=4.4.0                

CSV Reader

The CsvReader library is an extended version of Sébastien Lorion's fast CSV Reader project and provides fast parsing and reading of CSV files

NuGet Build status

To this end it is a straight drop-in replacement for the existing NuGet package LumenWork.Framework.IO and LumenWorksCsvReader, but with additional capabilities; the other rationale for the project is that the code is not available elsewhere in a public source repository, making it difficult to extend/contribute to.

Welcome to contributions from anyone.

You can see the version history here.

Build the project

  • Install Fake
  • In the command line run dotnet fake build

Library License

The library is available under the MIT License, for more information see the License file in the GitHub repository.

Getting Started

A good starting point is to look at Sébastien's article on Code Project.

A basic use of the reader something like this...

    using System.IO;
    using LumenWorks.Framework.IO.Csv;

    void ReadCsv()
    {
        // open the file "data.csv" which is a CSV file with headers
        using (var csv = new CachedCsvReader(new StreamReader("data.csv"), true))
        {
            // Field headers will automatically be used as column names
            myDataGrid.DataSource = csv;
        }
    }

Having said that, there are some extensions built into this version of the library that it is worth mentioning.

Additional Features

Columns

One addition is the addition of a Column list which holds the names and types of the data in the CSV file. If there are no headers present, we default the column names to Column1, Column2 etc; this can be overridden by setting the DefaultColumnHeader property e.g.

    using System.IO;
    using LumenWorks.Framework.IO.Csv;

    void ReadCsv()
    {
        // open the file "data.csv" which is a CSV file with headers
        using (var csv = new CachedCsvReader(new StreamReader("data.csv"), false))
        {
            csv.DefaultColumnHeader = "Fred"

            // Field headers will now be Fred1, Fred2, etc
            myDataGrid.DataSource = csv;
        }
    }

You can specify the columns yourself if there are none, and also specify the expected type; this is especially important when using against SqlBulkCopy which we will come back to later.

    using System.IO;
    using LumenWorks.Framework.IO.Csv;

    void ReadCsv()
    {
        // open the file "data.csv" which is a CSV file with headers
        using (var csv = new CachedCsvReader(new StreamReader("data.csv"), false))
        {
            csv.Columns.Add(new Column { Name = "PriceDate", Type = typeof(DateTime) });
            csv.Columns.Add(new Column { Name = "OpenPrice", Type = typeof(decimal) });
            csv.Columns.Add(new Column { Name = "HighPrice", Type = typeof(decimal) });
            csv.Columns.Add(new Column { Name = "LowPrice", Type = typeof(decimal) });
            csv.Columns.Add(new Column { Name = "ClosePrice", Type = typeof(decimal) });
            csv.Columns.Add(new Column { Name = "Volume", Type = typeof(int) });

            // Field headers will now be picked from the Columns collection
            myDataGrid.DataSource = csv;
        }
    }

SQL Bulk Copy

One use of CSV Reader is to have a nice .NET way of using SQL Bulk Copy (SBC) rather than bcp for bulk loading of data into SQL Server.

A couple of issues arise when using SBC 1. SBC wants the data presented as the correct type rather than as string 2. You need to map between the table destination columns and the CSV if the order does not match exactly

Below is a example using the Columns collection to set up the correct metadata for SBC

	public void Import(string fileName, string connectionString)
	{
		using (var reader = new CsvReader(new StreamReader(fileName), false))
		{
			reader.Columns = new List<LumenWorks.Framework.IO.Csv.Column>
			{
				new LumenWorks.Framework.IO.Csv.Column { Name = "PriceDate", Type = typeof(DateTime) },
				new LumenWorks.Framework.IO.Csv.Column { Name = "OpenPrice", Type = typeof(decimal) },
				new LumenWorks.Framework.IO.Csv.Column { Name = "HighPrice", Type = typeof(decimal) },
				new LumenWorks.Framework.IO.Csv.Column { Name = "LowPrice", Type = typeof(decimal) },
				new LumenWorks.Framework.IO.Csv.Column { Name = "ClosePrice", Type = typeof(decimal) },
				new LumenWorks.Framework.IO.Csv.Column { Name = "Volume", Type = typeof(int) },
				new LumenWorks.Framework.IO.Csv.Column { Name = "IsActive", Type = typeof(bool) },
			};

			// With the help of CustomBooleanReplacer you can define a mapping between string values in the CSV file and boolean values
			// In this example, 'Y' and 'Yes' will be treated as true; 'N' and 'No' - as false value.
			reader.CustomBooleanReplacer = new Dictionary<string, bool>
			{
				{"Y", true},
				{"N", false},
				{"Yes", true},
				{"No", false},
			};

			// Now use SQL Bulk Copy to move the data
			using (var sbc = new SqlBulkCopy(connectionString))
			{
				sbc.DestinationTableName = "dbo.DailyPrice";
				sbc.BatchSize = 1000;

				sbc.AddColumnMapping("PriceDate", "PriceDate");
				sbc.AddColumnMapping("OpenPrice", "OpenPrice");
				sbc.AddColumnMapping("HighPrice", "HighPrice");
				sbc.AddColumnMapping("LowPrice", "LowPrice");
				sbc.AddColumnMapping("ClosePrice", "ClosePrice");
				sbc.AddColumnMapping("Volume", "Volume");
				sbc.AddColumnMapping("IsActive", "IsActive");

				sbc.WriteToServer(reader);
			}
		}
	}

The method AddColumnMapping is an extension I wrote to simplify adding mappings to SBC

	public static class SqlBulkCopyExtensions
	{
		public static SqlBulkCopyColumnMapping AddColumnMapping(this SqlBulkCopy sbc, int sourceColumnOrdinal, int targetColumnOrdinal)
		{
			var map = new SqlBulkCopyColumnMapping(sourceColumnOrdinal, targetColumnOrdinal);
			sbc.ColumnMappings.Add(map);

			return map;
		}

		public static SqlBulkCopyColumnMapping AddColumnMapping(this SqlBulkCopy sbc, string sourceColumn, string targetColumn)
		{
			var map = new SqlBulkCopyColumnMapping(sourceColumn, targetColumn);
			sbc.ColumnMappings.Add(map);

			return map;
		}
	}

One other issue recently arose where we wanted to use SBC but some of the data was not in the file itself, but metadata that needed to be included on every row. The solution was to amend the CSV reader and Columns collection to allow default values to be provided that are not in the data.

The additional columns should be added at the end of the Columns collection to avoid interfering with the parsing, see the amended example below...

	public void Import(string fileName, string connectionString)
	{
		using (var reader = new CsvReader(new StreamReader(fileName), false))
		{
			reader.Columns = new List<LumenWorks.Framework.IO.Csv.Column>
			{
				...
				new LumenWorks.Framework.IO.Csv.Column { Name = "Volume", Type = typeof(int) },
				// NB Fake column so bulk import works
				new LumenWorks.Framework.IO.Csv.Column { Name = "Ticker", Type = typeof(string) },
			};

			// Fix up the column defaults with the values we need
			reader.UseColumnDefaults = true;
			reader.Columns[reader.GetFieldIndex("Ticker")] = Path.GetFileNameWithoutExtension(fileName);

			// Now use SQL Bulk Copy to move the data
			using (var sbc = new SqlBulkCopy(connectionString))
			{
				...
				sbc.AddColumnMapping("Ticker", "Ticker");

				sbc.WriteToServer(reader);
			}
		}
	}
VirtualColumns

It may happen that your database table where you would like to import a CSV contains more or different columns than your CSV file. As SqlBulkCopy requires to define all column mappings from the target table, you can use the VirtualColumns functionality:

    csv.VirtualColumns.Add(new Column { Name = "SourceTypeId", Type = typeof(int), DefaultValue = "1", NumberStyles = NumberStyles.Integer });
    csv.VirtualColumns.Add(new Column { Name = "DataBatchId", Type = typeof(int), DefaultValue = dataBatchId.ToString(), NumberStyles = NumberStyles.Integer });

In this case you define 2 additional columns that do not exist in the source CSV file, but exist in the target table. Also you can set the DefaultValue that will be bulk-copied to the target table together with the CSV file content. Do not forget to include the defined virtual columns to the SqlBulkCopy column mapping!

ExcludeFilter

In case if your CSV file is big enough and you do not want to import a whole file but some set of data, you can set the ExcludeFilter action:

csv.ExcludeFilter = () => ((csv["Fmly"] ?? "") + (csv["Group"] ?? "") + (csv["Type"] ?? "")).ToUpperInvariant() == "EQDEQUIT";

In this case all rows that fit the defined criteria will not be imported to the database.

MapDataToDto<T>

Calling this method returns you an IEnumerable<T> where T is the type of an entity/DTO you want to map your CSV file. Before calling this method you should define Columns passing names and data type of all columns within CSV file.

    var expected = new List<SampleData3>
    {
        new SampleData3("John", "Doe", "120 jefferson st.", "Riverside", "NJ", 8075, true, null),
        new SampleData3("Jack", "McGinnis", "220 hobo Av.", "Phila", "PA", 9119, false, null),
        new SampleData3("John \"Da Man\"", "Repici", "120 Jefferson St.", "Riverside", "NJ", 8075, false, null),
        new SampleData3("Stephen", "Tyler", "7452 Terrace \"At the Plaza\" road", "SomeTown", "SD", 91234, false, null),
        new SampleData3(null, "Blankman", null, "SomeTown", "SD", 298, false, null),
        new SampleData3("Joan \"the bone\", Anne", "Jet", "9th, at Terrace plc", "Desert City", "CO", 123, false, null),
    };
	/// using propertyToColumnMapping parameter you can map column names from CSV file to property names of your entity/DTO
    var propertyToColumnMapping = new Dictionary<string, string>
    {
        { "FirstName", "First Name" },
        { "LastName", "Last Name" },
        { "ZipCode", "Zip Code" }
    };
	using (CsvReader csv = new CsvReader(new StringReader(CsvReaderSampleData.SampleData1), true))
	{
		/// you should define Columns before calling MapDataToDto<T>!
        csv.Columns = new ColumnCollection
        {
            {"First Name", typeof(string)},
            {"Last Name", typeof(string)},
            {"Address", typeof(string)},
            {"City", typeof(string)},
            {"State", typeof(string)},
            {"Zip Code", typeof(int)},
            {"IsActive", typeof(bool)},
        };
        csv.CustomBooleanReplacer = new Dictionary<string, bool> { { "Y", true }, { "N", false } };
        var result = csv.MapDataToDto<SampleData3>(propertyToColumnMapping).ToList();
        result.Should().BeEquivalentTo(expected);
	}

Performance

To give an idea of performance, this took a native sample app using an ORM from 2m 27s to 1.37s using SBC and the full import took just over 11m to import 9.8m records.

One of the main reasons for using this library is its excellent performance on reading/parsing raw data, here's a recent run of the benchmark (which is in the source)

Test .NET 4.8 .NET 6 .NET 7 .NET 8
Test pass #1 - All fields
CsvReader - No cache 62.7333 80.1117 63.8059 37.0477
CachedCsvReader - Run 1 35.5160 41.7880 38.2042 39.8874
CachedCsvReader - Run 2 61426.7765 73999.3273 117302.0528 91973.2441
TextFieldParser 9.8574 13.9199 14.6264 16.4390
Regex 10.2663 17.9696 18.1544 20.7676
Test pass #1 - Field #72 (middle)
CsvReader - No cache 67.7263 95.0044 86.0328 87.4732
CachedCsvReader - Run 1 29.2253 36.9564 42.5468 44.7421
CachedCsvReader - Run 2 792792.7928 646108.6637 512820.5128 639534.8837
TextFieldParser 9.9626 13.1838 14.5921 18.2339
Regex 22.5060 37.9651 46.1343 50.7253
Test pass #2 - All fields
CsvReader - No cache 75.8756 88.6553 93.0768 109.0782
CachedCsvReader - Run 1 28.8864 38.4666 45.3834 40.4266
CachedCsvReader - Run 2 948275.8621 781527.5311 852713.1783 461699.8951
TextFieldParser 9.4858 13.8782 15.3555 17.4682
Regex 9.6566 18.4976 20.6475 22.6479
Test pass #2 - Field #72 (middle)
CsvReader - No cache 72.6275 98.7495 107.8248 111.1179
CachedCsvReader - Run 1 28.4391 35.7626 36.8091 52.7800
CachedCsvReader - Run 2 830188.6792 765217.3913 827067.6692 995475.1131
TextFieldParser 8.6734 14.6872 15.4038 18.2108
Regex 22.1135 44.0567 46.4395 50.7668
Test pass #3 - All fields
CsvReader - No cache 74.3428 90.2397 92.8137 111.8334
CachedCsvReader - Run 1 30.5301 35.6446 43.8796 49.9862
CachedCsvReader - Run 2 817843.8662 737018.4255 766550.5226 820895.5224
TextFieldParser 9.3366 14.4030 15.0148 17.9641
Regex 10.1904 19.1660 20.0524 21.7854
Test pass #3 - Field #72 (middle)
CsvReader - No cache 76.5840 104.5209 105.9584 113.8155
CachedCsvReader - Run 1 35.5272 38.0744 43.4385 37.0724
CachedCsvReader - Run 2 932203.3898 766550.5226 634005.7637 748299.3197
TextFieldParser 9.7928 14.4643 13.6437 17.7131
Regex 22.5506 44.6435 45.5831 49.3559
Average of all test passes .NET 4.8 .NET Core 3.1 .NET 5 .NET 6
CsvReader - No cache 716.483 928.803 915.854 950.610
CachedCsvReader - Run 1 313.540 377.821 417.103 441.491
CachedCsvReader - Run 2 7.304.552.278 6.284.036.436 6.184.099.499 6.263.129.964
TextFieldParser 95.181 140.894 147.727 176.715
Regex 162.139 303.831 328.352 360.082

As you can see, an average performance slightly increases from full .NET Framework 4.8 to .NET Core 8. Performance Chart This was run on a Core i5-8400 (6 cores), 32Gb RAM and 2Tb SSD.

Product Compatible and additional computed target framework versions.
.NET net5.0 was computed.  net5.0-windows was computed.  net6.0 is compatible.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 is compatible.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 is compatible.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
.NET Core netcoreapp2.0 was computed.  netcoreapp2.1 was computed.  netcoreapp2.2 was computed.  netcoreapp3.0 was computed.  netcoreapp3.1 was computed. 
.NET Standard netstandard2.0 is compatible.  netstandard2.1 was computed. 
.NET Framework net461 was computed.  net462 was computed.  net463 was computed.  net47 was computed.  net471 was computed.  net472 was computed.  net48 is compatible.  net481 was computed. 
MonoAndroid monoandroid was computed. 
MonoMac monomac was computed. 
MonoTouch monotouch was computed. 
Tizen tizen40 was computed.  tizen60 was computed. 
Xamarin.iOS xamarinios was computed. 
Xamarin.Mac xamarinmac was computed. 
Xamarin.TVOS xamarintvos was computed. 
Xamarin.WatchOS xamarinwatchos was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.
  • .NETFramework 4.8

    • No dependencies.
  • .NETStandard 2.0

  • net6.0

    • No dependencies.
  • net7.0

    • No dependencies.
  • net8.0

    • No dependencies.

NuGet packages (3)

Showing the top 3 NuGet packages that depend on LumenWorksCsvReader2:

Package Downloads
GnossApiWrapper.NetCore

Gnoss Api Wrapper, for using the Gnoss API.

GnossApiWrapper

Gnoss Api Wrapper, for using the Gnoss API.

FishbowlConnector.Net.Json

Package for interacting with the Fishbowl Connector API from a .NET project using JSON.

GitHub repositories (1)

Showing the top 1 popular GitHub repositories that depend on LumenWorksCsvReader2:

Repository Stars
RaythaHQ/raytha
Raytha is a powerful CMS with an easy-to-use interface and fast performance. It offers custom content types, a template engine, and various access controls. It supports multiple storage providers and an automatically generated REST API. Upgrade your development workflow with Raytha.
Version Downloads Last updated
4.4.0 3,672 9/12/2024
4.3.0 106,194 5/19/2022
4.2.1 2,798 4/29/2022
4.2.0 412 4/29/2022
4.1.2 35,106 7/12/2021
4.1.1 316 7/12/2021
4.1.0 5,055 11/4/2020

Added MapDataToDto<T> method to map CSV file to an IEnumerable<T> where T is a type of an entity/DTO
Removed support of .NET Framework 4.7.2, .NET Core 3.1 and .NET 5.0. Added support of .NET 7.0 and 8.0