LongCalc 0.5.16

There is a newer version of this package available.
See the version list below for details.
dotnet add package LongCalc --version 0.5.16
NuGet\Install-Package LongCalc -Version 0.5.16
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="LongCalc" Version="0.5.16" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add LongCalc --version 0.5.16
#r "nuget: LongCalc, 0.5.16"
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install LongCalc as a Cake Addin
#addin nuget:?package=LongCalc&version=0.5.16

// Install LongCalc as a Cake Tool
#tool nuget:?package=LongCalc&version=0.5.16

LongCalc Arbitrary Precision Float and Complex Number Library

Product Compatible and additional computed target framework versions.
.NET Framework net45 is compatible.  net451 was computed.  net452 was computed.  net46 was computed.  net461 was computed.  net462 was computed.  net463 was computed.  net47 was computed.  net471 was computed.  net472 was computed.  net48 was computed.  net481 was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
0.5.34 1,067 2/10/2023
0.5.33 1,111 12/28/2021
0.5.32 1,198 10/2/2021
0.5.31 1,046 8/1/2021
0.5.30 1,069 3/25/2021
0.5.29 1,240 10/15/2020
0.5.28 1,169 9/24/2020
0.5.27 1,210 9/18/2020
0.5.26 1,323 9/17/2020
0.5.25 1,220 9/6/2020
0.5.24 1,159 8/25/2020
0.5.23 1,219 8/5/2020
0.5.22 1,592 7/31/2020
0.5.21 1,599 7/30/2020
0.5.20 1,222 7/29/2020
0.5.19 1,219 7/28/2020
0.5.18 1,247 5/22/2020
0.5.17 1,216 5/19/2020
0.5.16 1,263 5/17/2020
0.5.15 1,250 5/17/2020
0.5.14 1,257 5/11/2020
0.5.13 1,338 5/3/2020
0.5.12 1,341 4/4/2020
0.5.11 1,224 3/31/2020
0.5.10 1,267 2/13/2020
0.5.9 1,312 2/8/2020
0.5.8 1,280 2/5/2020
0.5.7 1,389 1/21/2020
0.5.6 1,276 11/27/2019
0.5.5 1,253 11/16/2019
0.5.4 1,247 11/7/2019
0.5.3 1,260 11/2/2019
0.5.2 1,281 10/21/2019
0.5.1 1,493 7/29/2019
0.4.12 1,491 6/15/2019
0.4.11 1,487 6/10/2019
0.4.10 1,508 5/13/2019
0.4.9 1,580 4/15/2019
0.4.8 1,472 4/7/2019
0.4.7 1,485 3/23/2019
0.4.6 1,464 3/4/2019
0.4.5 1,506 3/4/2019
0.4.4 1,582 2/10/2019
0.4.3 1,789 1/30/2019
0.4.2 1,737 1/29/2019
0.4.1 1,762 1/29/2019
0.3.25 1,492 3/25/2019
0.3.24 1,490 3/4/2019
0.3.23 1,748 1/25/2019
0.3.22 1,803 1/23/2019
0.3.21 1,816 1/12/2019
0.3.20 1,795 1/4/2019
0.3.19 1,774 1/3/2019
0.3.18 1,784 12/30/2018
0.1.25 1,509 3/25/2019
0.1.24 1,511 3/4/2019
0.1.23 1,844 1/12/2019
0.1.22 1,756 12/24/2018
0.1.21 2,067 4/20/2018
0.1.16 1,929 9/2/2017
0.1.15 1,892 8/23/2017
0.1.11 1,797 8/4/2017
0.1.10 1,920 8/1/2017
0.1.8 1,799 7/27/2017
0.1.7 1,853 6/14/2017
0.1.6 1,889 6/14/2017
0.1.5 1,911 6/10/2017
0.1.2 2,174 11/22/2016
0.1.1 1,874 11/12/2016

Unsigned Assembly

Reversed the changes made in version 0.5.14. Instead, made an effort to ensure that the output from the various public bf functions was accurate to Precision places, counting from first non-zero digit (if output is non-zero). This resulted in changes to the following bf functions: Exp, Cos, ArcTan, ArcCos, ArcSin, Log.

If someone desires to output a bf object x.toString(... Precision, ...) in such a way as that in version 0.5.14, it only requires this code snippet:

string output = "0.";
if (!x.IsZero) { if (x.Abs() lt; new bf(1)) { Precision -= (long)Math.Abs(Log10(x.Abs())); if (Precision gt; 0) output = x.toString(... Precision, ...); } else output = x.toString(... Precision, ...); }

(where lt; is the less than character and gt; is the greater than character)

I should have mentioned in the release notes of the previous version that the internal limitation on x.Exp is that |x| be less than about 1.e+90180. For a value of x about this large, it required about an hour to compute x.Exp to 1,000 digits on a rather recent i5 machine with 20Gb memory.

Checks for arithmetic overflow or underflow are again compiler-included in this release.