PlainML 0.1.192

.NET 6.0
dotnet add package PlainML --version 0.1.192
NuGet\Install-Package PlainML -Version 0.1.192
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="PlainML" Version="0.1.192" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add PlainML --version 0.1.192
#r "nuget: PlainML, 0.1.192"
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install PlainML as a Cake Addin
#addin nuget:?package=PlainML&version=0.1.192

// Install PlainML as a Cake Tool
#tool nuget:?package=PlainML&version=0.1.192

PlainML

This library should simplify the tracking process of Machine-Learning (ML) training tasks. When you train a ML-model you can save parameters and metrics of the training attempts (named as "runs"). Also you can store artifacts and deploy it to a deploymenttarget like "dev" or "prod". On this way you can access them on an client application the deployed model.

build

Features

  • Experimenttracking (Runs with parameters, metrics and artifacts)
  • Integration of trainingprocesses
  • Deployment to different targets (dev, production)
  • Manage artifacts (deployment, caching)
  • Visualization

Getting Started

  1. Install VSCode
  2. Install C# extensions for VSCode
  3. Create project
    mkdir PlainMLExample
    cd PlainMLExample
    dotnet new console
    
  4. Install nuget package to project
    dotnet add package PlainML
    dotnet add package PlainML.Infrastructure
    
  5. Add usings on the top of program.cs-File
    using Microsoft.Extensions.DependencyInjection;
    using PlainML;
    using PlainML.Entities;
    using PlainML.Infrastructure;
    
  6. Use dependency injection to configure services
    var _provider = new ServiceCollection()
        .UsePlainMLSqLite()  // other providers like SQL-Server are avaiable
        .UseArtifactStorageFilesystem() // other providers like SQL-Server are avaiable
        .AddTransient<PlainMLService>()
        .BuildServiceProvider();
    
  7. Apply migration when init the database the first time or a new major version is avaiable
    var s = new PlainMLService(dbContextFactory, artifactStorage);
    await s.Migrate();
    
  8. Use code
    const string experimentName = "TestExperiment";
    const string artifactsPath = "./Artifacts";
    
    // Create database
    PlainMLService s = _provider.GetRequiredService<PlainMLService>();
    await s.Migrate();
    
    // Train model
    int rundId = await s.StartRun(experimentName);
    float metricValue = await TrainModel(artifactsPath);
    await s.EndRun(
        rundId,
        parameters: new[] { new Parameter(){ Name = "Parameter1", Value = 1.123f } },
        parameters_StringType: new[] { new Parameter_StringType(){ Name = "Trainers", Value = "LightGbm, OneVersusAllTrainer" } },
        metrics: new[] { new Metric(){ Name = "MicroAccuracy", Value = metricValue } },
        artifactsPath);
    
    // Deploy model
    await s.DeployRun(rundId);
    
    // Use model
    var deployedRun = await s.GetDeployedRun(experimentName) ?? throw new NullReferenceException();
    await s.DownloadArtifacts(deployedRun.Id, "./DownloadedArtifacts");
    
    Console.WriteLine("Artifacts of run in ./DownloadedArtifacts:");
    foreach (var item in Directory.EnumerateFiles("./DownloadedArtifacts"))
    {
        Console.WriteLine(item);
    }
    
    async static Task<float> TrainModel(string artifactsPath)
    {
        Console.WriteLine("Training...");
        await Task.Delay(100);
    
        if (Directory.Exists(artifactsPath))
        {
            Console.WriteLine("Directory exists. Delete it!");
            Directory.Delete(artifactsPath, true);
        }
    
        Directory.CreateDirectory(artifactsPath);
        await File.WriteAllTextAsync(Path.Combine(artifactsPath, "TestFile.bin"), "0011010101001");
    
        return 0.1f;
    }
    

Examples

NuGet Packages

Roadmap

  • Develop unstable version 0.1.*
  • Create initial stable version 1.0.0
  • ML.Net integration
  • Create docs
  • Rest-interface
  • Web-interface for visualization and Manage Experiments (run-table, graphs,...)
Product Versions
.NET net6.0 net6.0-android net6.0-ios net6.0-maccatalyst net6.0-macos net6.0-tvos net6.0-windows net7.0 net7.0-android net7.0-ios net7.0-maccatalyst net7.0-macos net7.0-tvos net7.0-windows
Compatible target framework(s)
Additional computed target framework(s)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (1)

Showing the top 1 NuGet packages that depend on PlainML:

Package Downloads
PlainML.Infrastructure

This library should simplify the tracking process of Machine-Learning training tasks.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
0.1.192 148 1/25/2023
0.1.191 140 1/25/2023
0.1.189 134 1/25/2023
0.1.185 133 1/25/2023
0.0.184 136 1/25/2023
0.0.179 141 1/25/2023
0.0.171 141 1/25/2023
0.0.165 139 1/24/2023
0.0.157 140 1/24/2023
0.0.155 143 1/24/2023
0.0.148 144 1/24/2023
0.0.141 132 1/24/2023
0.0.138 138 1/24/2023
0.0.137 135 1/23/2023
0.0.135 133 1/23/2023
0.0.133 129 1/23/2023
0.0.118 120 1/22/2023
0.0.117 123 1/21/2023
0.0.116 127 1/21/2023
0.0.115 125 1/21/2023
0.0.112 123 1/21/2023
0.0.111 124 1/21/2023