FuzzySharp 1.0.4

Fuzzy string matcher based on FuzzyWuzzy algorithm from SeatGeek

Install-Package FuzzySharp -Version 1.0.4
dotnet add package FuzzySharp --version 1.0.4
<PackageReference Include="FuzzySharp" Version="1.0.4" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add FuzzySharp --version 1.0.4
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

FuzzySharp

C# .NET fuzzy string matching implementation of Seat Geek's well known python FuzzyWuzzy algorithm.

Usage

Install-Package FuzzySharp -Version 1.0.3

Simple Ratio
Fuzz.Ratio("mysmilarstring","myawfullysimilarstirng")
72
Fuzz.Ratio("mysmilarstring","mysimilarstring")
97
Partial Ratio
Fuzz.PartialRatio("similar", "somewhresimlrbetweenthisstring")
71
Token Sort Ratio
Fuzz.TokenSortRatio("order words out of","  words out of order")
100
Fuzz.PartialTokenSortRatio("order words out of","  words out of order")
100
Token Set Ratio
Fuzz.TokenSetRatio("fuzzy was a bear", "fuzzy fuzzy fuzzy bear")
100
Fuzz.PartialTokenSetRatio("fuzzy was a bear", "fuzzy fuzzy fuzzy bear")
100
Token Initialism Ratio
Fuzz.TokenInitialismRatio("NASA", "National Aeronautics and Space Administration");
89
Fuzz.TokenInitialismRatio("NASA", "National Aeronautics Space Administration");
100

Fuzz.TokenInitialismRatio("NASA", "National Aeronautics Space Administration, Kennedy Space Center, Cape Canaveral, Florida 32899");
53
Fuzz.PartialTokenInitialismRatio("NASA", "National Aeronautics Space Administration, Kennedy Space Center, Cape Canaveral, Florida 32899");
100
Token Abbreviation Ratio
Fuzz.TokenAbbreviationRatio("bl 420", "Baseline section 420", PreprocessMode.Full);
40
Fuzz.PartialTokenAbbreviationRatio("bl 420", "Baseline section 420", PreprocessMode.Full);
50      
Weighted Ratio
Fuzz.WeightedRatio("The quick brown fox jimps ofver the small lazy dog", "the quick brown fox jumps over the small lazy dog")
95
Process
Process.ExtractOne("cowboys", new[] { "Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"})
(string: Dallas Cowboys, score: 90, index: 3)
Process.ExtractTop("goolge", new[] { "google", "bing", "facebook", "linkedin", "twitter", "googleplus", "bingnews", "plexoogl" }, limit: 3);
[(string: google, score: 83, index: 0), (string: googleplus, score: 75, index: 5), (string: plexoogl, score: 43, index: 7)]
Process.ExtractAll("goolge", new [] {"google", "bing", "facebook", "linkedin", "twitter", "googleplus", "bingnews", "plexoogl" })
[(string: google, score: 83, index: 0), (string: bing, score: 22, index: 1), (string: facebook, score: 29, index: 2), (string: linkedin, score: 29, index: 3), (string: twitter, score: 15, index: 4), (string: googleplus, score: 75, index: 5), (string: bingnews, score: 29, index: 6), (string: plexoogl, score: 43, index: 7)]
// score cutoff
Process.ExtractAll("goolge", new[] { "google", "bing", "facebook", "linkedin", "twitter", "googleplus", "bingnews", "plexoogl" }, cutoff: 40)
[(string: google, score: 83, index: 0), (string: googleplus, score: 75, index: 5), (string: plexoogl, score: 43, index: 7)]
Process.ExtractSorted("goolge", new [] {"google", "bing", "facebook", "linkedin", "twitter", "googleplus", "bingnews", "plexoogl" })
[(string: google, score: 83, index: 0), (string: googleplus, score: 75, index: 5), (string: plexoogl, score: 43, index: 7), (string: facebook, score: 29, index: 2), (string: linkedin, score: 29, index: 3), (string: bingnews, score: 29, index: 6), (string: bing, score: 22, index: 1), (string: twitter, score: 15, index: 4)]

Extraction will use WeightedRatio and full process by default. Override these in the method parameters to use different scorers and processing.
Here we use the Fuzz.Ratio scorer and keep the strings as is, instead of Full Process (which will .ToLowercase() before comparing)

Process.ExtractOne("cowboys", new[] { "Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys" }, s => s, ScorerCache.Get<DefaultRatioScorer>());
(string: Dallas Cowboys, score: 57, index: 3)

Extraction can operate on objects of similar type. Use the "process" parameter to reduce the object to the string which it should be compared on. In the following example, the object is an array that contains the matchup, the arena, the date, and the time. We are matching on the first (0 index) parameter, the matchup.

var events = new[]
{
    new[] { "chicago cubs vs new york mets", "CitiField", "2011-05-11", "8pm" },
    new[] { "new york yankees vs boston red sox", "Fenway Park", "2011-05-11", "8pm" },
    new[] { "atlanta braves vs pittsburgh pirates", "PNC Park", "2011-05-11", "8pm" },
};
var query = new[] { "new york mets vs chicago cubs", "CitiField", "2017-03-19", "8pm" };
var best = Process.ExtractOne(query, events, strings => strings[0]);

best: (value: { "chicago cubs vs new york mets", "CitiField", "2011-05-11", "8pm" }, score: 95, index: 0)

Using Different Scorers

Scoring strategies are stateless, and as such should be static. However, in order to get them to share all the code they have in common via inheritance, making them static was not possible.
Currently one way around having to new up an instance everytime you want to use one is to use the cache. This will ensure only one instance of each scorer ever exists.

var ratio = ScorerCache.Get<DefaultRatioScorer>();
var partialRatio = ScorerCache.Get<PartialRatioScorer>();
var tokenSet = ScorerCache.Get<TokenSetScorer>();
var partialTokenSet = ScorerCache.Get<PartialTokenSetScorer>();
var tokenSort = ScorerCache.Get<TokenSortScorer>();
var partialTokenSort = ScorerCache.Get<PartialTokenSortScorer>();
var tokenAbbreviation = ScorerCache.Get<TokenAbbreviationScorer>();
var partialTokenAbbreviation = ScorerCache.Get<PartialTokenAbbreviationScorer>();
var weighted = ScorerCache.Get<WeightedRatioScorer>();

Credits

  • SeatGeek
  • Adam Cohen
  • David Necas (python-Levenshtein)
  • Mikko Ohtamaa (python-Levenshtein)
  • Antti Haapala (python-Levenshtein)
  • Panayiotis (Java implementation I heavily borrowed from)

FuzzySharp

C# .NET fuzzy string matching implementation of Seat Geek's well known python FuzzyWuzzy algorithm.

Usage

Install-Package FuzzySharp -Version 1.0.3

Simple Ratio
Fuzz.Ratio("mysmilarstring","myawfullysimilarstirng")
72
Fuzz.Ratio("mysmilarstring","mysimilarstring")
97
Partial Ratio
Fuzz.PartialRatio("similar", "somewhresimlrbetweenthisstring")
71
Token Sort Ratio
Fuzz.TokenSortRatio("order words out of","  words out of order")
100
Fuzz.PartialTokenSortRatio("order words out of","  words out of order")
100
Token Set Ratio
Fuzz.TokenSetRatio("fuzzy was a bear", "fuzzy fuzzy fuzzy bear")
100
Fuzz.PartialTokenSetRatio("fuzzy was a bear", "fuzzy fuzzy fuzzy bear")
100
Token Initialism Ratio
Fuzz.TokenInitialismRatio("NASA", "National Aeronautics and Space Administration");
89
Fuzz.TokenInitialismRatio("NASA", "National Aeronautics Space Administration");
100

Fuzz.TokenInitialismRatio("NASA", "National Aeronautics Space Administration, Kennedy Space Center, Cape Canaveral, Florida 32899");
53
Fuzz.PartialTokenInitialismRatio("NASA", "National Aeronautics Space Administration, Kennedy Space Center, Cape Canaveral, Florida 32899");
100
Token Abbreviation Ratio
Fuzz.TokenAbbreviationRatio("bl 420", "Baseline section 420", PreprocessMode.Full);
40
Fuzz.PartialTokenAbbreviationRatio("bl 420", "Baseline section 420", PreprocessMode.Full);
50      
Weighted Ratio
Fuzz.WeightedRatio("The quick brown fox jimps ofver the small lazy dog", "the quick brown fox jumps over the small lazy dog")
95
Process
Process.ExtractOne("cowboys", new[] { "Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"})
(string: Dallas Cowboys, score: 90, index: 3)
Process.ExtractTop("goolge", new[] { "google", "bing", "facebook", "linkedin", "twitter", "googleplus", "bingnews", "plexoogl" }, limit: 3);
[(string: google, score: 83, index: 0), (string: googleplus, score: 75, index: 5), (string: plexoogl, score: 43, index: 7)]
Process.ExtractAll("goolge", new [] {"google", "bing", "facebook", "linkedin", "twitter", "googleplus", "bingnews", "plexoogl" })
[(string: google, score: 83, index: 0), (string: bing, score: 22, index: 1), (string: facebook, score: 29, index: 2), (string: linkedin, score: 29, index: 3), (string: twitter, score: 15, index: 4), (string: googleplus, score: 75, index: 5), (string: bingnews, score: 29, index: 6), (string: plexoogl, score: 43, index: 7)]
// score cutoff
Process.ExtractAll("goolge", new[] { "google", "bing", "facebook", "linkedin", "twitter", "googleplus", "bingnews", "plexoogl" }, cutoff: 40)
[(string: google, score: 83, index: 0), (string: googleplus, score: 75, index: 5), (string: plexoogl, score: 43, index: 7)]
Process.ExtractSorted("goolge", new [] {"google", "bing", "facebook", "linkedin", "twitter", "googleplus", "bingnews", "plexoogl" })
[(string: google, score: 83, index: 0), (string: googleplus, score: 75, index: 5), (string: plexoogl, score: 43, index: 7), (string: facebook, score: 29, index: 2), (string: linkedin, score: 29, index: 3), (string: bingnews, score: 29, index: 6), (string: bing, score: 22, index: 1), (string: twitter, score: 15, index: 4)]

Extraction will use WeightedRatio and full process by default. Override these in the method parameters to use different scorers and processing.
Here we use the Fuzz.Ratio scorer and keep the strings as is, instead of Full Process (which will .ToLowercase() before comparing)

Process.ExtractOne("cowboys", new[] { "Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys" }, s => s, ScorerCache.Get<DefaultRatioScorer>());
(string: Dallas Cowboys, score: 57, index: 3)

Extraction can operate on objects of similar type. Use the "process" parameter to reduce the object to the string which it should be compared on. In the following example, the object is an array that contains the matchup, the arena, the date, and the time. We are matching on the first (0 index) parameter, the matchup.

var events = new[]
{
    new[] { "chicago cubs vs new york mets", "CitiField", "2011-05-11", "8pm" },
    new[] { "new york yankees vs boston red sox", "Fenway Park", "2011-05-11", "8pm" },
    new[] { "atlanta braves vs pittsburgh pirates", "PNC Park", "2011-05-11", "8pm" },
};
var query = new[] { "new york mets vs chicago cubs", "CitiField", "2017-03-19", "8pm" };
var best = Process.ExtractOne(query, events, strings => strings[0]);

best: (value: { "chicago cubs vs new york mets", "CitiField", "2011-05-11", "8pm" }, score: 95, index: 0)

Using Different Scorers

Scoring strategies are stateless, and as such should be static. However, in order to get them to share all the code they have in common via inheritance, making them static was not possible.
Currently one way around having to new up an instance everytime you want to use one is to use the cache. This will ensure only one instance of each scorer ever exists.

var ratio = ScorerCache.Get<DefaultRatioScorer>();
var partialRatio = ScorerCache.Get<PartialRatioScorer>();
var tokenSet = ScorerCache.Get<TokenSetScorer>();
var partialTokenSet = ScorerCache.Get<PartialTokenSetScorer>();
var tokenSort = ScorerCache.Get<TokenSortScorer>();
var partialTokenSort = ScorerCache.Get<PartialTokenSortScorer>();
var tokenAbbreviation = ScorerCache.Get<TokenAbbreviationScorer>();
var partialTokenAbbreviation = ScorerCache.Get<PartialTokenAbbreviationScorer>();
var weighted = ScorerCache.Get<WeightedRatioScorer>();

Credits

  • SeatGeek
  • Adam Cohen
  • David Necas (python-Levenshtein)
  • Mikko Ohtamaa (python-Levenshtein)
  • Antti Haapala (python-Levenshtein)
  • Panayiotis (Java implementation I heavily borrowed from)

Release Notes

Fix bug regarding trailing spaces with token initialism ratio

  • .NETCoreApp 2.0

    • No dependencies.
  • .NETCoreApp 2.1

    • No dependencies.
  • .NETFramework 4.5

    • No dependencies.
  • .NETFramework 4.6

    • No dependencies.
  • .NETFramework 4.6.1

    • No dependencies.
  • .NETFramework 4.7

    • No dependencies.
  • .NETFramework 4.7.1

    • No dependencies.
  • .NETFramework 4.7.2

    • No dependencies.
  • .NETStandard 1.6

  • .NETStandard 2.0

    • No dependencies.

This package is not used by any popular GitHub repositories.

Version History

Version Downloads Last updated
1.0.4 4,652 6/3/2019
1.0.3 1,792 5/6/2019
1.0.1 9,343 5/18/2018
1.0.0 252 4/27/2018